Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V

Atmel

Features

High Performance, Low Power Atmel® AVR® 8-Bit Microcontroller

® Advanced RISC Architecture

— 135 Powerful Instructions — Most Single Clock Cycle Execution
— 32 x 8 General Purpose Working Registers
Fully Static Operation
— Up to 16 MIPS Throughput at 16MHz
— On-Chip 2-cycle Multiplier
High Endurance Non-volatile Memory Segments
— 64K/128K/256KBytes of In-System Self-Programmable Flash
— 4Kbytes EEPROM
— 8Kbytes Internal SRAM
— Write/Erase Cycles:10,000 Flash/100,000 EEPROM
— Data retention: 20 years at 85°C/ 100 years at 25°C
— Optional Boot Code Section with Independent Lock Bits

* In-System Pro_gramrpin% by On-chip Boot Program
* True Read-While-Write Operation
— Programming Lock for Software Security
* Endurance: Up to 64Kbytes Optional External Memory Space
Atmel® QTouch® library support
— Capacitive touch buttons, sliders and wheels
— QTouch and QMatrix acquisition
— Up to 64 sense channels
JTAG (IEEE® std. 1149.1 compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard
- Extensive On-chip Debug Support
— Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
Peripheral Features
— Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
— Four 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode
— Real Time Counter with Separate Oscillator
— Four 8-bit PWM Channels
— Six/Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits
(ATmega1281/2561, ATmega640/1280/2560)
— Output Compare Modulator
— 8/16-channel, 10-bit ADC (ATmega1281/2561, ATmega640/1280/2560)
— Two/Four Programmable Serial USART (ATmega1281/2561, ATmega640/1280/2560)
— Master/Slave SPI Serial Interface
— Byte Oriented 2-wire Serial Interface
— Programmable Watchdog Timer with Separate On-chip Oscillator
— On-chip Analog Comparator
— Interrupt and Wake-up on Pin Change
Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated Oscillator
— External and Internal Interrupt Sources
— Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,
and Extended Standby
1/0 and Packages
— 54/86 Programmable I/O Lines (ATmega1281/2561, ATmega640/1280/2560)
- 64-pad QFN/MLF, 64-lead TQFP (ATmega1281/2561)
— 100-lead TQFP, 100-ball CBGA (ATmega640/1280/2560)
— RoHS/Fully Green
Temperature Range:
— -40°C to 85°C Industrial
Ultra-Low Power Consumption
— Active Mode: 1MHz, 1.8V: 500pA
— Power-down Mode: 0.1pA at 1.8V
Speed Grade:
— ATmega640V/ATmega1280V/ATmega1281V:

*0-4MHz @ 1.8V - 5.5V, 0 - 8MHz @ 2.7V - 5.5V
— ATmega2560V/ATmega2561V:

*0-2MHz @ 1.8V - 5.5V, 0 - 8MHz @ 2.7V - 5.5V
— ATmega640/ATmega1280/ATmega1281:

*0-8MHz @ 2.7V - 5.5V, 0 - 16MHz @ 4.5V - 5.5V
— ATmega2560/ATmega2561:

*0-16MHz @ 4.5V - 5.5V

8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash

DATASHEET

2549Q-AVR-02/2014

1. Pin Configurations

Figure 1-1. TQFP-pinout ATmega640/1280/2560

(OCOB) PG5
(RXDO/PCINT8) PEO
(TXDO) PE1
(XCKO/AINO) PE2
(OC3A/AIN1) PE3
(OC3B/INT4) PE4
(OC3C/INT5) PE5
(T3/INT6) PE6
(CLKO/ICP3/INT7) PE7
vce

GND

(RXD2) PHO

(TXD2) PH1

(XCK2) PH2

(OC4A) PH3
(OC4B) PH4
(0C4C) PH5
(OC2B) PH6
(SS/PCINTO) PBO
(SCK/PCINT1) PB1
(MOSI/PCINT2) PB2
(MISO/PCINT3) PB3
(OC2A/PCINT4) PB4
(OC1A/PCINT5) PB5
(OC1B/PCINT6) PB6

Atmel

E] AVCC

E GND

E‘ AREF

g PFO (ADCO)

PF1 (ADC1)

PF2 (ADC2)

[o6] [o5]

PF3 (ADC3)

[94] [03] [o2] [o1]

PF4 (ADC4/TCK)

PF5 (ADC5/TMS)

PK5 (ADC13/PCINT21)
PK6 (ADC14/PCINT22)

PF6 (ADC6/TDO)
PA1 (AD1)
PA2 (AD2)

(8] PF7 (ADC7/TDI)
[®] PK7 (ADC15/PCINT23)

@ PKO (ADC8/PCINT16)
E PK1 (ADC9/PCINT17)
§| PK2 (ADC10/PCINT18)
E PK3 (ADC11/PCINT19)
E PK4 (ADC12/PCINT20)
E GND

[F] PA0 (ADO)

E \Yele}
E PJ7

[64] [g3] [77] [76]

(3] [=] [B][R] [®] [8][2] [5] [<] (3] [6] [2] [3] [B] [Z1[2] [e] [«] [~ [o] [o] [=] [o] [¢] [-]

INDEX CORNER

PA3 (AD3)

PA4 (AD4)

PAS5 (AD5)

PA6 (AD6)

PA7 (AD7)

PG2 (ALE)

PJ6 (PCINT15)

PJ5 (PCINT14)

PJ4 (PCINT13)

PJ3 (PCINT12)

PJ2 (XCK3/PCINT11)
PJ1 (TXD3/PCINT10)
PJO (RXD3/PCINT9)
GND

VCC

PC7 (A15)

PC6 (A14)

PC5 (A13)

PC4 (A12)

PC3 (A11)

PC2 (A10)

PC1 (A9)

PCO (A8)

PG1 (RD)

I eI (&l (2 1a] (8] 2] (8] 8] (3] (2 [R] [T (2 18] [8] (2] [8] [8] [S] [Z] IR [T 2] (5]

PGO (WR)

(3]

(T4) PH7 [

(TOSC2) PG3 @
(TOSC1) PG4 @

(OCOA/OC1C/PCINT7) PB7

(g
vee [
GND [

XTAL2 @

RESET

B

XTAL1

(&]
ey
(RXD1/INT2) PD2 [&]

(TXD1/INT3) PD3

el 7

(T1) PD6 E
(TO) PD7 E

(ICP4)PLO [g]
(]
(€]

(OC5A) PL3 @
(ICP1) PD4

(ocsB) PL4 [
(0C5C) PLS [

(SCL/INTO) PDO [&]
(XCK1) PD5

(SDA/INT1) PD1

ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]

2549Q-AVR-02/2014

2

Figure 1-2. CBGA-pinout ATmega640/1280/2560
Top view Bottom view
1 2 3 4 5 6 7 8 9 10 10 9 8 7 6 5 4 3 2 1
%
A OO0OO0OO0O0O0OO0O0 |~a
B OO0OO0O0O00O0OOO |-
c OO0OO0O0O000OO0O0 |c
D . OO0O00O0OO0O0O0O |b
E OO0OO00O0OO0O0O0O0 |E
F OO0OO0OO000OO0O |F
G OO0OO0O0O000O0O0O0 |a
H OO0OO0O0O00O0OOO |H
J OO0OO00O0O00O0O0O0 |/
K OO0O0OO0O0O0OO0O |k
Table 1-1. CBGA-pinout ATmega640/1280/2560
1 2 3 4 5 6 7 8 9 10
A GND AREF PFO PF2 PF5 PKO PK3 PK6 GND vce
B AVCC PG5 PF1 PF3 PF6 PK1 PK4 PK7 PAO PA2
C PE2 PEO PE1 PF4 PF7 PK2 PK5 PJ7 PA1 PA3
D PE3 PE4 PE5 PE6 PH2 PA4 PAS5 PAG6 PA7 PG2
E PE7 PHO PH1 PH3 PH5 PJ6 PJ5 PJ4 PJ3 PJ2
F VvCC PH4 PH6 PBO PL4 PD1 PJ1 PJO PC7 GND
G GND PB1 PB2 PB5 PL2 PDO PD5 PC5 PC6 VCC
H PB3 PB4 RESET PL1 PL3 PL7 PD4 PC4 PC3 PC2
J PH7 PG3 PB6 PLO XTAL2 PL6 PD3 PC1 PCO PG1
K PB7 PG4 VCC GND XTALA PL5 PD2 PD6 PD7 PGO
Note: The functions for each pin is the same as for the 100 pin packages shown in Figure 1-1 on page 2.
ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 3

Atmel

2549Q-AVR-02/2014

Figure 1-3. Pinout ATmega1281/2561

g @ 0 =
O = 0O 0o
~ ~ ~ ~ B £ E K&
o ~— [aV] (o] < Lo (o] N~
O O O O O O O 0O S = o
[m) [m] a o [a] [m) [m) [a) a [m]
) b ¥ 2 £ £ 2 £ £ < < < <
Sz eropereegnrzdgxzy
<C (O] <C o o o o o [a o o (O] > E E &
(2] 8] [S] [=] [S] [B] [B] [B] [8] [B8] [3] [B] [F] [=] []] [2]
(OCOB) PG5 PA3 (AD3)
(RXDO/PCINTS/PDI) PEO PA4 (AD4)
(TXDO/PDO) PEH INDEX CORNER PAS (ADS)
(XCKO/AINO) PE2 PA6 (AD6)
(OC3A/AIN1) PE3 [5] PA7 (AD7)
(OC3B/INT4) PE4 [6] PG2 (ALE)
(OC3C/INTS) PE5 [7| PC7 (A15)
(T3/INT6) PE6 | 8] PC6 (A14)
(ICP3/CLKO/INT7) PE7 [9] PC5 (A13)
(SS/PCINTO) PBO PC4 (A12)
(SCK/PCINT1) PB1 PC3 (A11)
(MOSI/PCINT2) PB2 PC2 (A10)
(MISO/PCINTS3) PB3 PC1 (A9)
(OC2A/PCINT4) PB4 PCO (A8)
(OC1A/PCINTS5) PB5 PG1 (RD)
(OC1B/PCINT6) PB6 PGO (WR)
== 2] R [&] Q] [&] (& 1€ [&] [&] [&] [&] 8] [5] [&]
N M T - OO N -~ © - o ®© ¥ 10 © N
c00hczi28E8E8E8¢8 8
~ § & |Y X X & F 8 ®» - = = ©
E O O I E E E E o X - E
£ 2 2 £z 222 7 7
IS a2asg <=
O 22 g £
5 T k&
o)
<
o
O
<}

Note: The large center pad underneath the QFN/MLF package is made of metal and internally connected to GND. It should
be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the pack-
age might loosen from the board.

At L ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 4
me 2549Q-AVR—02/2014

2. Overview

The ATmega640/1280/1281/2560/2561 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced
RISC architecture. By executing powerful instructions in a single clock cycle, the
ATmega640/1280/1281/2560/2561 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.

21 Block Diagram

Figure 2-1. Block Diagram

PF7.0 PK7..0 RJ7.0 PE7.0
Voo A F N A
T | — — — — — o — — — — — — — e — — — —
Power I
Supervision
FESET —|—> PO BOD & PORTF (8) PORTK (8) PORTJ(8) PORTE®) |« |
FESET 7 7y WY X 7
\4 Y y A
- Watchdog -> I
GND I Timer
v v Y 4 v |
Watchdog AD Analog P
I Oscillator JIAG Converter Comparator < »| USARTO
. I
XTAL1 | A v
I Oscillator N Internal 16bit T/C3 |«
L I:l I Qircuits/ > EPROM Bandgap reference |
= Clock Y
Generation |
El IL) USART 3
1 XTAL2 l x 16bit T/C5 |« »
| 17 < » AVR v |
PA7.0 < PORTA(®) | ¢ 16 bit T/C4 |
A A
I * »] USART1
| Y Y |
<> >
PG5.0 PORT G(6) < XRAM FLASH SRAM 16 bit T/C1
I i i |
' I
PC7.0 <—|— PORTC@B) [™ 5] 8bit T/CO 8bitT/C2 USART2
A A A A A I
I : A \ A \
I A A I
NOTE |
I Shaded partsonly available
in the 100-pin version. vV Vv v v ¢ |
Y
I Complete functionality for PORTD (8) PORTB (8) PORTH (8) PORTL (8)

the ADC, T/C4, and T/C5 only |
I available in the 100-pin version.

PD7.0 PB7.0 PH7.0 PL7.0

The Atmel® AVR® core combines a rich instruction set with 32 general purpose working registers. All the 32 regis-
ters are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in
one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 5

2549Q-AVR-02/2014

The ATmega640/1280/1281/2560/2561 provides the following features: 64K/128K/256K bytes of In-System Pro-
grammable Flash with Read-While-Write capabilities, 4Kbytes EEPROM, 8Kbytes SRAM, 54/86 general purpose
I/O lines, 32 general purpose working registers, Real Time Counter (RTC), six flexible Timer/Counters with com-
pare modes and PWM, four USARTS, a byte oriented 2-wire Serial Interface, a 16-channel, 10-bit ADC with
optional differential input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator,
an SPI serial port, IEEE® std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug
system and programming and six software selectable power saving modes. The Idle mode stops the CPU while
allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down
mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt
or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a
timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O mod-
ules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby
mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast
start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator and the
Asynchronous Timer continue to run.

Atmel offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels functionality into AVR
microcontrollers. The patented charge-transfer signal acquisition offersrobust sensing and includes fully
debounced reporting of touch keys and includes Adjacent Key Suppression® (AKS®) technology for unambiguous
detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your
own touch applications.

The device is manufactured using the Atmel high-density nonvolatile memory technology. The On-chip ISP Flash
allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional non-
volatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use
any interface to download the application program in the application Flash memory. Software in the Boot Flash
section will continue to run while the Application Flash section is updated, providing true Read-While-Write opera-
tion. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel
ATmega640/1280/1281/2560/2561 is a powerful microcontroller that provides a highly flexible and cost effective
solution to many embedded control applications.

The ATmega640/1280/1281/2560/2561 AVR is supported with a full suite of program and system development
tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation
kits.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 6

2549Q-AVR-02/2014

2.2 Comparison Between ATmega1281/2561 and ATmega640/1280/2560

Each device in the ATmega640/1280/1281/2560/2561 family differs only in memory size and number of pins. Table
2-1 summarizes the different configurations for the six devices.

Table 2-1. Configuration Summary

General 16 bits resolution Serial ADC
Device Flash EEPROM RAM Purpose /O pins PWM channels USARTs | Channels
ATmega640 64KB 4KB 8KB 86 12 4 16
ATmega1280 128KB 4KB 8KB 86 12 4 16
ATmega1281 128KB 4KB 8KB 54 6 2 8
ATmega2560 256KB 4KB 8KB 86 12 4 16
ATmega2561 256KB 4KB 8KB 54 6 2 8

2.3 Pin Descriptions
2.3.1 vcc

Digital supply voltage.
2.3.2 GND

Ground.
2.3.3 Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buf-
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on
page 75.

234 Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buf-
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are

externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on
page 76.

2.3.5 Port C (PC7..PCO0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buf-
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are

externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the ATmega640/1280/1281/2560/2561 as listed on page 79.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 7

2549Q-AVR-02/2014

2.3.6 Port D (PD7..PDO)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buf-
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on
page 80.

2.3.7 Port E (PE7..PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buf-
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on
page 82.

2.3.8 Port F (PF7..PFO0)

Port F serves as analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal
pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both
high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not
running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be
activated even if a reset occurs.

Port F also serves the functions of the JTAG interface.

239 Port G (PG5..PGO)

Port G is a 6-bit I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have sym-
metrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally
pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset con-
dition becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on
page 86.

2.3.10 Port H (PH7..PHO)

Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port H output buf-
fers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port H pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port H pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Port H also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 88.

2.311 PortJ (PJ7..PJ0)

Port J is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port J output buffers
have symmetrical drive characteristics with both high sink and source capability. As inputs, Port J pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port J pins are tri-stated when a
reset condition becomes active, even if the clock is not running. Port J also serves the functions of various special
features of the ATmega640/1280/2560 as listed on page 90.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 8

2549Q-AVR-02/2014

2.3.12 Port K (PK7..PKO0)

Port K serves as analog inputs to the A/D Converter.

Port K is a 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The Port K output buffers
have symmetrical drive characteristics with both high sink and source capability. As inputs, Port K pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port K pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Port K also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 92.

2.3.13 PortL (PL7..PLO)

Port L is a 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The Port L output buffers
have symmetrical drive characteristics with both high sink and source capability. As inputs, Port L pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port L pins are tri-stated when a
reset condition becomes active, even if the clock is not running.

Port L also serves the functions of various special features of the ATmega640/1280/2560 as listed on page 94.
2.3.14 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock
is not running. The minimum pulse length is given in “System and Reset Characteristics” on page 360. Shorter
pulses are not guaranteed to generate a reset.

2.3.15 XTALA1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
2.3.16 XTAL2
Output from the inverting Oscillator amplifier.

23.17 AvCC

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to Vg, even if
the ADC is not used. If the ADC is used, it should be connected to V¢ through a low-pass filter.

2.3.18 AREF

This is the analog reference pin for the A/D Converter.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 9

2549Q-AVR-02/2014

3. Resources

A comprehensive set of development tools and application notes, and datasheets are available for download on
http://www.atmel.com/avr.

4. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. Be
aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is com-
piler dependent. Confirm with the C compiler documentation for more details.

These code examples assume that the part specific header file is included before compilation. For I/O registers
located in extended I/0O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with
instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR",
and "CBR".

5. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 ppm over 20
years at 85°C or 100 years at 25°C.

6. Capacitive touch sensing

The Atmel® QTouch® Library provides a simple to use solution to realize touch sensitive interfaces on most Atmel
AVR® microcontrollers. The QTouch Library includes support for the QTouch and QMatrix acquisition methods.

Touch sensing can be added to any application by linking the appropriate Atmel QTouch Library for the AVR Micro-
controller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the
touch sensing API’s to retrieve the channel information and determine the touch sensor states.

The QTouch Library is FREE and downloadable from the Atmel website at the following location:
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the Atmel QTouch Library
User Guide - also available for download from the Atmel website.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 10

2549Q-AVR-02/2014

www.atmel.com/qtouchlibrary
www.atmel.com/qtouchlibrary
www.atmel.com/qtouchlibrary

7. AVR CPU Core

7.1 Introduction

This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure cor-
rect program execution. The CPU must therefore be able to access memories, perform calculations, control
peripherals, and handle interrupts.

7.2 Architectural Overview

Figure 7-1. Block Diagram of the AVR Architecture

[Data Bus 8-bit
y
Program Satus
Prggfgm < Counter [T and Control |~
Memory <
Interrupt
X » 32x8 < Unit
Instruction Ceneral P
Register Purpose - =
< Registers <«> Unit
y
Irbstrucc’;ion ! v _ Watchdog
ecoder - Timer
o =2 \/
l i 2 ALU
% g > Analog
Control Lines g 2 Comparator
5| B
3| 5)
o £ <> yOModulef
5 Data «sle>| OModule2
> SRAM
<> |/OModulen
EEPROM <
I/OLines <

v

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with separate memories
and buses for program and data. Instructions in the program memory are executed with a single level pipelining.
While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept
enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable
Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle
access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two oper-

At L ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 11
me 2549Q-AVR—02/2014

ands are output from the Register File, the operation is executed, and the result is stored back in the Register File
—in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing —
enabling efficient address calculations. One of the these address pointers can also be used as an address pointer
for look up tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single
register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated
to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the
whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address
contains a 16-bit or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the Application Program
section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes
into the Application Flash memory section must reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack
is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total
SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before sub-
routines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data
SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the 1/0O space with an additional Global Interrupt Enable bit in
the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have
priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the
priority.

The 1/0O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other
I/0 functions. The 1/0O Memory can be accessed directly, or as the Data Space locations following those of the Reg-
ister File, 0x20 - Ox5F. In addition, the ATmega640/1280/1281/2560/2561 has Extended 1/O space from 0x60 -
0x1FF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used.

7.3 ALU - Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers.
Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an
immediate are executed. The ALU operations are divided into three main categories — arithmetic, logical, and bit-
functions. Some implementations of the architecture also provide a powerful multiplier supporting both
signed/unsigned multiplication and fractional format. See the “Instruction Set Summary” on page 404 for a detailed
description.

7.4 Status Register

The Status Register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the Status
Register is updated after all ALU operations, as specified in the “Instruction Set Summary” on page 404. This will in
many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact
code.

The Status Register is not automatically stored when entering an interrupt routine and restored when returning
from an interrupt. This must be handled by software.

/ItmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 12

2549Q-AVR-02/2014

7.4.1 SREG - AVR Status Register

The AVR Status Register — SREG — is defined as:

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) | 1 | T | H | S v N z c] srec
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control
is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the inter-
rupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an
interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set
and cleared by the application with the SEI and CLI instructions, as described in the “Instruction Set Summary” on
page 404.

¢ Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the oper-
ated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be
copied into a bit in a register in the Register File by the BLD instruction.

e Bit 5 — H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD arithmetic.
See the “Instruction Set Summary” on page 404 for detailed information.

e Bit4-S:SignBit,S=N®V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. See
the “Instruction Set Summary” on page 404 for detailed information.

¢ Bit 3 - V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the “Instruction Set Sum-
mary” on page 404 for detailed information.

¢ Bit 2 — N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set Sum-
mary” on page 404 for detailed information.

e Bit1-2Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Summary” on
page 404 for detailed information.

e Bit 0 - C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set Summary” on page
404 for detailed information.

7.5 General Purpose Register File

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required perfor-
mance and flexibility, the following input/output schemes are supported by the Register File:

* One 8-bit output operand and one 8-bit result input
* Two 8-bit output operands and one 8-bit result input

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 13

2549Q-AVR-02/2014

* Two 8-bit output operands and one 16-bit result input
e One 16-bit output operand and one 16-bit result input
Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 7-2. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 O0x0E
Purpose R15 0xOF
Working R16 0x10
Registers R17 ox11
R26 Ox1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and most of them are sin-
gle cycle instructions.

As shown in Figure 7-2, each register is also assigned a data memory address, mapping them directly into the first
32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory
organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers can be set to
index any register in the file.

7.5.1 The X-register, Y-register, and Z-register

The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit
address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are
defined as described in Figure 7-3.

Figure 7-3. The X-, Y-, and Z-registers

15 XH XL 0
X-register |7 o7 ol
R27 (Ox1B) R26 (Ox1A)
15 YH YL
Y-register I 7 0 I 7 0 I
R29 (0x1D) R28 (0x10)
15 ZH ZL 0
Z-register I 0 |7 0 |
R31 (Ox1F) R30 (OX1E)

In the different addressing modes these address registers have functions as fixed displacement, automatic incre-
ment, and automatic decrement (see the “Instruction Set Summary” on page 404 for details).

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 14

2549Q-AVR-02/2014

7.6 Stack Pointer

The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses
after interrupts and subroutine calls. The Stack Pointer Register always points to the top of the Stack. Note that the
Stack is implemented as growing from higher memory locations to lower memory locations. This implies that a
Stack PUSH command decreases the Stack Pointer.

The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. This
Stack space in the data SRAM must be defined by the program before any subroutine calls are executed or inter-
rupts are enabled. The Stack Pointer must be set to point above 0x0200. The initial value of the stack pointer is the
last address of the internal SRAM. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two for ATmega640/1280/1281 and three for
ATmega2560/2561 when the return address is pushed onto the Stack with subroutine call or interrupt. The Stack
Pointer is incremented by one when data is popped from the Stack with the POP instruction, and it is incremented
by two for ATmega640/1280/1281 and three for ATmega2560/2561 when data is popped from the Stack with
return from subroutine RET or return from interrupt RETI.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is
implementation dependent. Note that the data space in some implementations of the AVR architecture is so small
that only SPL is needed. In this case, the SPH Register will not be present.

Bit 15 14 13 12 11 10 9 8
Ox3E (OX5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R/W R/W RW RW R/W R/W RIW R/W
R/W R/W R/W R/W R/W R/W RIW R/W
Initial Value 0 0 1 0 0 0 0 1
1 1 1 1 1 1
AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 15

2549Q-AVR-02/2014

7.6.1 RAMPZ - Extended Z-pointer Register for ELPM/SPM

Bit 7 6 5 4 3 2 1 0

0x3B (0x5B) I RAMPZ7 RAMPZ6 RAMPZ5 RAMPZ4 RAMPZ3 RAMPZ2 RAMPZ1 RAMPZ0 I RAMPZ
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

For ELPM/SPM instructions, the Z-pointer is a concatenation of RAMPZ, ZH, and ZL, as shown in Figure 7-4. Note
that LPM is not affected by the RAMPZ setting.

Figure 7-4. The Z-pointer used by ELPM and SPM

Bit 7 0 7 0 7 0
(Individually)

| RAMPZ | ZH | ZL |
Bit (Z-pointer) 23 16 15 8 7 0

The actual number of bits is implementation dependent. Unused bits in an implementation will always read as zero.
For compatibility with future devices, be sure to write these bits to zero.

7.6.2 EIND - Extended Indirect Register

Bit 7 6 5 4 3 2 1 0

0x3C (0x5C) I EIND7 EIND6 EIND5 EIND4 EIND3 EIND2 EIND1 EINDO I EIND
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

For EICALL/EIJMP instructions, the Indirect-pointer to the subroutine/routine is a concatenation of EIND, ZH, and
ZL, as shown in Figure 7-5. Note that ICALL and IJMP are not affected by the EIND setting.

Figure 7-5. The Indirect-pointer used by EICALL and EIJMP

Bit 7 0 7 0 7 0
(Individually)

| EIND | ZH | ZL |
Bit (Indirect- 23 16 15 8 7 0
pointer)

The actual number of bits is implementation dependent. Unused bits in an implementation will always read as zero.
For compatibility with future devices, be sure to write these bits to zero.

7.7 Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the
CPU clock clkgpy, directly generated from the selected clock source for the chip. No internal clock division is used.

Figure 7-6 on page 17 shows the parallel instruction fetches and instruction executions enabled by the Harvard
architecture and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS
per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per
power-unit.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 16

2549Q-AVR-02/2014

Figure 7-6. The Parallel Instruction Fetches and Instruction Executions
T T2 T3 T4

ok —1 4 N

CPU
1st Instruction Fetch

1

i

1st Instruction Execute :
2nd Instruction Fetch :

1

1

1

2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch | | | A S

Figure 7-7 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using
two register operands is executed, and the result is stored back to the destination register.

Figure 7-7. Single Cycle ALU Operation
T T2 T3 T4

O AN S N A N A N

CPU
Total Execution Time

1

1

:

Register Operands Fetch : De

1

ALU Operation Execute '

1

1

Result Write Back

7.8 Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a
separate program vector in the program memory space. All interrupts are assigned individual enable bits which
must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the
interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when Boot Lock bits
BLBO02 or BLB12 are programmed. This feature improves software security. See the section “Memory Program-
ming” on page 325 for details.

The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors.
The complete list of vectors is shown in “Interrupts” on page 101. The list also determines the priority levels of the
different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next
is INTO — the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash sec-
tion by setting the IVSEL bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 101 for more
information. The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see “Memory Programming” on page 325.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user soft-
ware can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current
interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For
these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt
handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writ-
ing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding
interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 17

2549Q-AVR-02/2014

flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit
is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is
set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not nec-
essarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will
not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction
before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when
returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be
executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example
shows how this can be used to avoid interrupts during the timed EEPROM write sequence.

Assembly Code Example

in rl6, SREG ; Store SREG value

cli ; disable interrupts during timed sequence
sbi EECR, EEMPE ; Start EEPROM write

sbi EECR, EEPE

out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */
_ _disable_interrupt () ;

EECR |= (1<<EEMPE) ; /* start EEPROM write */
EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be executed before any pend-
ing interrupts, as shown in this example.

Assembly Code Example

sei ; set Global Interrupt Enable
sleep; enter sleep, waiting for Interrupt
; note: will enter sleep before any pending

; interrupt (s)

C Code Example

_ _enable_interrupt(); /* set Global Interrupt Enable */

__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 18

2549Q-AVR-02/2014

7.8.1 Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is five clock cycles minimum. After five clock
cycles the program vector address for the actual interrupt handling routine is executed. During these five clock
cycle period, the Program Counter is pushed onto the Stack. The vector is normally a jump to the interrupt routine,
and this jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this
instruction is completed before the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the
interrupt execution response time is increased by five clock cycles. This increase comes in addition to the start-up
time from the selected sleep mode.

A return from an interrupt handling routine takes five clock cycles. During these five clock cycles, the Program
Counter (three bytes) is popped back from the Stack, the Stack Pointer is incremented by three, and the I-bit in
SREG is set.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 19

2549Q-AVR-02/2014

8. AVR Memories

This section describes the different memories in the ATmega640/1280/1281/2560/2561. The AVR architecture has
two main memory spaces, the Data Memory and the Program Memory space. In addition, the
ATmega640/1280/1281/2560/2561 features an EEPROM Memory for data storage. All three memory spaces are
linear and regular.

8.1 In-System Reprogrammable Flash Program Memory

The ATmega640/1280/1281/2560/2561 contains 64K/128K/256K bytes On-chip In-System Reprogrammable Flash
memory for program storage, see Figure 8-1. Since all AVR instructions are 16 bit or 32 bit wide, the Flash is orga-
nized as 32K/64K/128K x 16. For software security, the Flash Program memory space is divided into two sections,
Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The ATmega640/1280/1281/2560/2561
Program Counter (PC) is 15/16/17 bits wide, thus addressing the 32K/64K/128K program memory locations. The
operation of Boot Program section and associated Boot Lock bits for software protection are described in detail in
“Boot Loader Support — Read-While-Write Self-Programming” on page 310. “Memory Programming” on page 325
contains a detailed description on Flash data serial downloading using the SPI pins or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see the LPM — Load Program
Memory instruction description and ELPM - Extended Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution Timing” on page 16.

Figure 8-1. Program Flash Memory Map
Address (HEX)

Application Flash Section

Boot Flash Section

0x7FFF/OxFFFF/0x1FFFF

8.2 SRAM Data Memory

Figure 8-2 on page 22 shows how the ATmega640/1280/1281/2560/2561 SRAM Memory is organized.

The ATmega640/1280/1281/2560/2561 is a complex microcontroller with more peripheral units than can be sup-
ported within the 64 location reserved in the Opcode for the IN and OUT instructions. For the Extended I/O space
from $060 - $1FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

The first 4,608/8,704 Data Memory locations address both the Register File, the /0 Memory, Extended 1/0 Mem-
ory, and the internal data SRAM. The first 32 locations address the Register file, the next 64 location the standard
I/O Memory, then 416 locations of Extended I/O memory and the next 8,192 locations address the internal data
SRAM.

An optional external data SRAM can be used with the ATmega640/1280/1281/2560/2561. This SRAM will occupy
an area in the remaining address locations in the 64K address space. This area starts at the address following the
internal SRAM. The Register file, I/0, Extended I/O and Internal SRAM occupies the lowest 4,608/8,704 bytes, so
when using 64Kbytes (65,536 bytes) of External Memory, 60,478/56,832 Bytes of External Memory are available.
See “External Memory Interface” on page 27 for details on how to take advantage of the external memory map.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 20

2549Q-AVR-02/2014

When the addresses accessing the SRAM memory space exceeds the internal data memory locations, the exter-
nal data SRAM is accessed using the same instructions as for the internal data memory access. When the internal
data memories are accessed, the read and write strobe pins (PGO and PG1) are inactive during the whole access
cycle. External SRAM operation is enabled by setting the SRE bit in the XMCRA Register.

Accessing external SRAM takes one additional clock cycle per byte compared to access of the internal SRAM.
This means that the commands LD, ST, LDS, STS, LDD, STD, PUSH, and POP take one additional clock cycle. If
the Stack is placed in external SRAM, interrupts, subroutine calls and returns take three clock cycles extra
because the three-byte program counter is pushed and popped, and external memory access does not take
advantage of the internal pipe-line memory access. When external SRAM interface is used with wait-state, one-
byte external access takes two, three, or four additional clock cycles for one, two, and three wait-states respec-
tively. Interrupts, subroutine calls and returns will need five, seven, or nine clock cycles more than specified in the
instruction set manual for one, two, and three wait-states.

The five different addressing modes for the data memory cover: Direct, Indirect with Displacement, Indirect, Indi-
rect with Pre-decrement, and Indirect with Post-increment. In the Register file, registers R26 to R31 feature the
indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given by the Y-register
or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-increment, the address
registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 1/O registers, and the 4,196/8,192 bytes of internal data SRAM in the
ATmega640/1280/1281/2560/2561 are all accessible through all these addressing modes. The Register File is
described in “General Purpose Register File” on page 13.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 21

2549Q-AVR-02/2014

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf

Figure 8-2. Data Memory Map

Address (HEX)

0-1F 32 Registers

20 - 5F 64 1/0 Registers

60 - 1FF 416 External I/O Registers
200 Internal SRAM
21FF (8192 x 8)
2200 External SRAM

(0 - 64K x 8)
FFFF
8.2.1 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The internal data SRAM
access is performed in two clkgp, cycles as described in Figure 8-3.

Figure 8-3. On-chip Data SRAM Access Cycles

T T2 T3
1 1 1
1 1 1
Mopy —| : :
Address ! Compute Address ; X Address valid |
1 1 1
Data — a D— 1w
1 1 1 s
1 1 1
WR 1 1/ 1\ =
1 1 1 e
1 1 1
Data t 1 (7 1)—_ -
1 1 T 8
1 1 1
o
RD ! 1/ :\
1 1 1
Memory Access Instruction Next Instruction

8.3 EEPROM Data Memory

The ATmega640/1280/1281/2560/2561 contains 4Kbytes of data EEPROM memory. It is organized as a separate
data space, in which single bytes can be read and written. The EEPROM has an endurance of at least 100,000
write/erase cycles. The access between the EEPROM and the CPU is described in the following, specifying the
EEPROM Address Registers, the EEPROM Data Register, and the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see “Serial Downloading”
on page 338, “Programming via the JTAG Interface” on page 342, and “Programming the EEPROM” on page 333
respectively.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 22

2549Q-AVR-02/2014

8.3.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the I/0O space, see “Register Description” on page 34.

The write access time for the EEPROM is given in Table 8-1. A self-timing function, however, lets the user software
detect when the next byte can be written. If the user code contains instructions that write the EEPROM, some pre-
cautions must be taken. In heavily filtered power supplies, V. is likely to rise or fall slowly on power-up/down. This
causes the device for some period of time to run at a voltage lower than specified as minimum for the clock fre-
quency used. See “Preventing EEPROM Corruption” on page 25. for details on how to avoid problems in these
situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed. See the description
of the EEPROM Control Register for details on this; “Register Description” on page 34.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is executed. When
the EEPROM is written, the CPU is halted for two clock cycles before the next instruction is executed.

The calibrated Oscillator is used to time the EEPROM accesses. Table 8-1 lists the typical programming time for
EEPROM access from the CPU.

Table 8-1. EEPROM Programming Time
Symbol Number of Calibrated RC Oscillator Cycles Typ Programming Time
EEPROM write (from CPU) 26,368 3.3ms

The following code examples show one assembly and one C function for writing to the EEPROM. The examples
assume that interrupts are controlled (for example by disabling interrupts globally) so that no interrupts will occur
during execution of these functions. The examples also assume that no Flash Boot Loader is present in the soft-
ware. If such code is present, the EEPROM write function must also wait for any ongoing SPM command to finish.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 23

2549Q-AVR-02/2014

Assembly Code Example("

EEPROM_write:
; Wait for completion of previous write
sbic EECR, EEPE
rjmp EEPROM write
; Set up address (rl8:rl7) in address register
out EEARH, rl8
out EEARL, rl7
; Write data (rlé) to Data Register
out EEDR,rlé6
; Write logical one to EEMPE
sbi EECR, EEMPE
; Start eeprom write by setting EEPE
sbi EECR, EEPE

ret

C Code Example"

void EEPROM_write (unsigned int uiAddress, unsigned char ucData)
{
/* Wait for completion of previous write */
while (EECR & (1<<EEPE))
/* Set up address and Data Registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMPE */
EECR |= (1<<EEMPE) ;
/* Start eeprom write by setting EEPE */
EECR |= (1<<EEPE);

Note: 1. See “About Code Examples” on page 10.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 24

2549Q-AVR-02/2014

The next code examples show assembly and C functions for reading the EEPROM. The examples assume that
interrupts are controlled so that no interrupts will occur during execution of these functions.

Assembly Code Example!"

EEPROM_read:
; Wait for completion of previous write
sbic EECR, EEPE
rjemp EEPROM_read
; Set up address (r18:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Start eeprom read by writing EERE
sbi EECR, EERE
; Read data from Data Register
in rl16,EEDR

ret

C Code Example("

unsigned char EEPROM_read(unsigned int uiAddress)
{

/* Wait for completion of previous write */

while (EECR & (1<<EEPE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

Note: 1. See “About Code Examples” on page 10.
8.3.2 Preventing EEPROM Corruption

During periods of low V. the EEPROM data can be corrupted because the supply voltage is too low for the CPU
and the EEPROM to operate properly. These issues are the same as for board level systems using EEPROM, and
the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First, a regular write
sequence to the EEPROM requires a minimum voltage to operate correctly. Secondly, the CPU itself can execute
instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can be done by
enabling the internal Brown-out Detector (BOD). If the detection level of the internal BOD does not match the
needed detection level, an external low V¢ reset Protection circuit can be used. If a reset occurs while a write
operation is in progress, the write operation will be completed provided that the power supply voltage is sufficient.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 25

2549Q-AVR-02/2014

8.4 /O Memory

The I/O space definition of the ATmega640/1280/1281/2560/2561 is shown in “Register Summary” on page 399.

All ATmega640/1280/1281/2560/2561 1/0Os and peripherals are placed in the I/O space. All I/O locations may be
accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between the 32 general purpose
working registers and the 1/0 space. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible
using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS
and SBIC instructions. Refer to the “Instruction Set Summary” on page 404 for more details. When using the 1/0
specific commands IN and OUT, the I/O addresses 0x00 - Ox3F must be used. When addressing I/0O Registers as
data space using LD and ST instructions, 0x20 must be added to these addresses. The
ATmega640/1280/1281/2560/2561 is a complex microcontroller with more peripheral units than can be supported
within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 -
0x1FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory
addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI
and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such
Status Flags. The CBI and SBI instructions work with registers 0x00 to Ox1F only.

The I/0O and peripherals control registers are explained in later sections.

8.4.1 General Purpose I/0 Registers

The ATmega640/1280/1281/2560/2561 contains three General Purpose 1/0 Registers. These registers can be
used for storing any information, and they are particularly useful for storing global variables and Status Flags. Gen-
eral Purpose I/O Registers within the address range 0x00 - Ox1F are directly bit-accessible using the SBI, CBI,
SBIS, and SBIC instructions. See “Register Description” on page 34.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 26

2549Q-AVR-02/2014

9. External Memory Interface

With all the features the External Memory Interface provides, it is well suited to operate as an interface to memory
devices such as External SRAM and Flash, and peripherals such as LCD-display, A/D, and D/A. The main features

are:

* Four different wait-state settings (including no wait-state)

* Independent wait-state setting for different External Memory sectors (configurable sector size)

* The number of bits dedicated to address high byte is selectable

* Bus keepers on data lines to minimize current consumption (optional)

9.1 Overview

When the eXternal MEMory (XMEM) is enabled, address space outside the internal SRAM becomes available
using the dedicated External Memory pins (see Figure 1-3 on page 4, Table 13-3 on page 75, Table 13-9 on page
79, and Table 13-21 on page 86). The memory configuration is shown in Figure 9-1.

Figure 9-1. External Memory with Sector Select

Memory Configuration A

0x0000
Internal memory
0x21FF
A 0x2200
Lower sector
SRWO1
SRWO00
———————— 1SRL[2..O]
External Memory Upper sector
(0 - 60K x 8)
SRW11
SRW10
9.1.1 Using the External Memory Interface
The interface consists of:
e AD7:0: Multiplexed low-order address bus and data bus
A15:8: High-order address bus (configurable number of bits)
e ALE: Address latch enable
* RD: Read strobe
« WR: Write strobe
At M eL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET]

2549Q-AVR-02/2014

27

The control bits for the External Memory Interface are located in two registers, the External Memory Control Regis-
ter A— XMCRA, and the External Memory Control Register B — XMCRB.

When the XMEM interface is enabled, the XMEM interface will override the setting in the data direction registers
that corresponds to the ports dedicated to the XMEM interface. For details about the port override, see the alter-
nate functions in section “I/O-Ports” on page 67. The XMEM interface will auto-detect whether an access is internal
or external. If the access is external, the XMEM interface will output address, data, and the control signals on the
ports according to Figure 9-3 on page 29 (this figure shows the wave forms without wait-states). When ALE goes
from high-to-low, there is a valid address on AD7:0. ALE is low during a data transfer. When the XMEM interface is
enabled, also an internal access will cause activity on address, data and ALE ports, but the RD and WR strobes
will not toggle during internal access. When the External Memory Interface is disabled, the normal pin and data
direction settings are used. Note that when the XMEM interface is disabled, the address space above the internal
SRAM boundary is not mapped into the internal SRAM. Figure 9-2 illustrates how to connect an external SRAM to
the AVR using an octal latch (typically “74 x 573" or equivalent) which is transparent when G is high.

9.1.2 Address Latch Requirements

Due to the high-speed operation of the XRAM interface, the address latch must be selected with care for system
frequencies above 8MHz @ 4V and 4MHz @ 2.7V. When operating at conditions above these frequencies, the typ-
ical old style 74HC series latch becomes inadequate. The External Memory Interface is designed in compliance to
the 74AHC series latch. However, most latches can be used as long they comply with the main timing parameters.
The main parameters for the address latch are:

* D to Q propagation delay (tpp)
* Data setup time before G low (tg)
* Data (address) hold time after G low (1)

The External Memory Interface is designed to guaranty minimum address hold time after G is asserted low of t, =
5ns. Refer to t axx 1 p/tLiaxx st in “External Data Memory Timing” Tables 31-11 through Tables 31-18 on pages 367
- 370. The D-to-Q propagation delay (tpp) must be taken into consideration when calculating the access time
requirement of the external component. The data setup time before G low (tg;) must not exceed address valid to
ALE low (tay c) minus PCB wiring delay (dependent on the capacitive load).

Figure 9-2. External SRAM Connected to the AVR
AVR SRAM

/J ll> D[7:0]
AD7:0 \I_L|'> D Q __I/—I\ A[7:0]
ALE > G
| I
A15:8 'l> A[15:8]
RD >l RD
WR > WR
AT 640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET 28
Atmel mega []

2549Q-AVR-02/2014

9.1.3 Pull-up and Bus-keeper

The pull-ups on the AD7:0 ports may be activated if the corresponding Port register is written to one. To reduce
power consumption in sleep mode, it is recommended to disable the pull-ups by writing the Port register to zero
before entering sleep.

The XMEM interface also provides a bus-keeper on the AD7:0 lines. The bus-keeper can be disabled and enabled
in software as described in “XMCRB — External Memory Control Register B” on page 38. When enabled, the bus-
keeper will keep the previous value on the AD7:0 bus while these lines are tri-stated by the XMEM interface.

9.1.4 Timing

External Memory devices have different timing requirements. To meet these requirements, the XMEM interface
provides four different wait-states as shown in Table 9-3 on page 37. It is important to consider the timing specifica-
tion of the External Memory device before selecting the wait-state. The most important parameters are the access
time for the external memory compared to the set-up requirement. The access time for the External Memory is
defined to be the time from receiving the chip select/address until the data of this address actually is driven on the
bus. The access time cannot exceed the time from the ALE pulse must be asserted low until data is stable during a
read sequence (see t, | g + tr gy - tovrn iN Tables 31-11 through Tables 31-18 on pages 367 - 370). The different
wait-states are set up in software. As an additional feature, it is possible to divide the external memory space in two
sectors with individual wait-state settings. This makes it possible to connect two different memory devices with dif-
ferent timing requirements to the same XMEM interface. For XMEM interface timing details, refer to Table 31-11 on
page 367 to Table 31-18 on page 370 and Figure 31-9 on page 370 to Figure 31-12 on page 372 in the “External
Data Memory Timing” on page 367.

Note that the XMEM interface is asynchronous and that the waveforms in the following figures are related to the
internal system clock. The skew between the internal and external clock (XTAL1) is not guarantied (varies between
devices temperature, and supply voltage). Consequently, the XMEM interface is not suited for synchronous
operation.

Figure 9-3. External Data Memory Cycles without Wait-state (SRWn1=0 and SRWn0=0)")

| ™ T2 | T3

T4

System Clock (CLchu) _/__/__/ \—/
ALE __/_—\

v. addr. :X

s

Ih

1
1 1
1 1
1 1
1 1
1 1 1
A15:8 Pre , Address ,
A X A A .o
DA7:0 Prév. data :X Address)@(: Data X °
T T T T 1 “E
: ' : | |z
WR | : ._/—:_
| | | 1 -
1 1 1 1 1 -
1 4 1 1
DA7:0 (XMBK =0) _ Prév. data X Address — paa |) '
: | : . l
L A L L 1 g
DA7:0 (XMBK = 1) Prév. data X Address X XXXXX X Data | X XXXXXXXX X 8
A i A A |
RD | ! :_I/—E_
1 1 1 1
1 1 1 1 —

Note: 1. SRWn1 =SRW11 (upper sector) or SRWO01 (lower sector), SRWn0 = SRW10 (upper sector) or SRWO0O0 (lower sec-
tor). The ALE pulse in period T4 is only present if the next instruction accesses the RAM (internal or external).

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 29

2549Q-AVR-02/2014

Figure 9-4. External Data Memory Cycles with SRWn1 = 0 and SRWn0 = 1(

2 , 3 | T4 | 5
1

| T1 |
System Clock (CLKgpy) _)’__)' \ / \ / _/__/_
ALE J_\

\
. j .
A15:8 Prév. addr. X ' Address | '
A X A . A R
DA7:0 Prév.data X Address . Data H
"? :X X>§(X: ! : | g
L . . . | 1 . S
WA | : N\ : / b
| | | A | -
DA7:0 (XMBK =0) Prdv. data X Address y———{ pata | ')—i(:
| | | | | I
n 1 n L 1 g
DA7:0 (XMBK = 1) Prév. data) Address | Data | H @
: X X ' : X | &
1 1 1 1 1 1
- 1 1 1 1 1
RD | : N\ | i/ I
| | | , | —

Note: 1. SRWn1=SRW11 (upper sector) or SRWO01 (lower sector), SRWn0O = SRW10 (upper sector) or SRWO0O (lower sec-
tor).
The ALE pulse in period T5 is only present if the next instruction accesses the RAM (internal or external).

Figure 9-5. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 0"

System Clock (CLKgpy) _/j’ \ Xj \ Xj \ /1 \ / \ X \ E/_

————x
XC

A15:8 Prev. addr. X ! Address
DA7:0 Prév.data X Address ! Data | ! '
2 X XX ‘ ‘ : e
o : : : : : |5
WR 1 A\ 1 : / b
| | | i | i [
DA7:0 (XMBK = 0) Prdv. data X Address Y—+——L pata | ! !)—C
| | | i | A |
L . L L L] g
. _ |
DA7:0 (XMBK = 1) Prérv.data X Address | X paa 1 : 1 x. &
RD | ‘ N\ ‘ ! \/ :
| | | | ' | . —

Note: 1. SRWn1=SRW11 (upper sector) or SRWO01 (lower sector), SRWn0O = SRW10 (upper sector) or SRWO0O (lower sec-
tor).
The ALE pulse in period T6 is only present if the next instruction accesses the RAM (internal or external).

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 30

2549Q-AVR-02/2014

Figure 9-6. External Data Memory Cycles with SRWn1 = 1 and SRWn0 = 1(

T4 ! 5 i T6 | 7

System Clock (CLKgpyy) _/1(\ (1 \ j/ \ j/ \ /:(\ h [;,_\ ,i/_
TN L T

L I 1]
A15:8 Prdv. addr. X ' Address | ' ' ' X
: : : : ! : : e
: : ' £
DA7:0 Prév. data X Address . Data | ! 1 1 =
‘ Xaaress oo | . : | X
. A . : T . :
: : : | ! | ;
WR i AN ; : / i b
, , , j ! ! —
! :
DA7:0 (XMBK =0) Prdv. data X Adaress YL Data |) C
; ; | :
! | | : | . <
DA7:0 (XMBK = 1) Prév. data ' Address | Data | ! i H o
“7 K X : : : ' X |&
! | ! . T
: : : | !
L : AN : : /
| | | ; :
| | | ! ! ! —

Note: 1. SRWn1 =SRW11 (upper sector) or SRW01 (lower sector), SRWn0 = SRW10 (upper sector) or SRWO00 (lower sec-
tor).
The ALE pulse in period T7 is only present if the next instruction accesses the RAM (internal or external).

9.1.5 Using all Locations of External Memory Smaller than 64Kbytes

Since the external memory is mapped after the internal memory as shown in Figure 9-1 on page 27, the external
memory is not addressed when addressing the first 8,704 bytes of data space. It may appear that the first 8,704
bytes of the external memory are inaccessible (external memory addresses 0x0000 to 0x21FF). However, when
connecting an external memory smaller than 64Kbytes, for example 32Kbytes, these locations are easily accessed
simply by addressing from address 0x8000 to OxA1FF. Since the External Memory Address bit A15 is not con-
nected to the external memory, addresses 0x8000 to OxA1FF will appear as addresses 0x0000 to 0x21FF for the
external memory. Addressing above address OxA1FF is not recommended, since this will address an external
memory location that is already accessed by another (lower) address. To the Application software, the external
32Kbytes memory will appear as one linear 32Kbytes address space from 0x2200 to OxA1FF. This is illustrated in
Figure 9-7.

Figure 9-7. Address Map with 32Kbytes External Memory

AVR Memory Map External 32K SRAM
0x0000 0x0000
Internal Memory
Ox21FF _ _ _ _ _ | L _ _ _ _ _
0x2200
oxzrFF | Extemal - OX7FFF
0x8000 Memory
Ox90FF |_ _ _ _ _ _
0x9100
(Do Not Use)
OXFFFF
AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 31

2549Q-AVR-02/2014

9.1.6 Using all 64Kbytes Locations of External Memory

Since the External Memory is mapped after the Internal Memory as shown in Figure 9-1 on page 27, only 56Kbytes
of External Memory is available by default (address space 0x0000 to Ox21FF is reserved for internal memory).
However, it is possible to take advantage of the entire External Memory by masking the higher address bits to zero.
This can be done by using the XMMn bits and control by software the most significant bits of the address. By set-
ting Port C to output 0x00, and releasing the most significant bits for normal Port Pin operation, the Memory
Interface will address 0x0000 - Ox2FFF. See the following code examples.

Care must be exercised using this option as most of the memory is masked away.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 32

2549Q-AVR-02/2014

Assembly Code Example("

; OFFSET is defined to 0x4000 to ensure

; external memory access

; Configure Port C (address high byte) to
; output 0x00 when the pins are released
; for normal Port Pin operation

1di rl6, OxXFF

out DDRC, rl6

1di rl6, 0x00

out PORTC, rlé6

; release PC7:6

1di rl6, (1l<<XMM1)

sts XMCRB, rl6

; write OxAA to address 0x0001 of external
; memory

1di rl6, Oxaa

sts O0x0001+OFFSET, rlé6

; re-enable PC7:6 for external memory
1di rl6, (0<<XMM1)

sts XMCRB, rl6

; store 0x55 to address (OFFSET + 1) of
; external memory

1di rl6, 0x55

sts O0x0001+OFFSET, rlé6

C Code Example"

#define OFFSET 0x4000

void XRAM_ example (void)

{
unsigned char *p = (unsigned char *) (OFFSET + 1);

DDRC = OxFF;
PORTC = 0x00;

XMCRB = (1<<XMM1) ;

*p = Oxaa;

XMCRB = 0x00;

*p = 0x55;

Note: 1. See “About Code Examples” on page 10.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 33

2549Q-AVR-02/2014

9.2 Register Description

9.2.1 EEPROM registers

9.2.1.1 EEARH and EEARL — The EEPROM Address Register
Bit 15 14 13 12 11 10 9 8
0x22 (0x42) - - - - EEAR11 EEAR10 EEAR9 EEAR8 EEARH
0x21 (0x41) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
RIW RIW RIW R/W RIW RIW R/W RIW
Initial Value 0 0 0 0 X X X X
X X X X X X

¢ Bits 15:12 — Res: Reserved Bits
These bits are reserved bits and will always read as zero.

¢ Bits 11:0 - EEAR8:0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address in the 4Kbytes EEPROM
space. The EEPROM data bytes are addressed linearly between 0 and 4096. The initial value of EEAR is unde-
fined. A proper value must be written before the EEPROM may be accessed.

9.2.1.2 EEDR — The EEPROM Data Register
Bit 7 6 5 4 3 2 1 0
0x20 (0x40) | MSB | | | LSB | EEDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

¢ Bits 7:0 — EEDR7:0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the EEPROM in the
address given by the EEAR Register. For the EEPROM read operation, the EEDR contains the data read out from
the EEPROM at the address given by EEAR.

9.2.1.3 EECR — The EEPROM Control Register
Bit 7 6 5 4 3 2 1 0
ox1F (x3F) | - - | EEPM1 | EEPMO EERIE EEMPE EEPE EERE | EECR
Read/Write R R R/W R/W R/W R/W R/W R/W
Initial Value 0 0 X X 0 0 X 0

¢ Bits 7:6 — Res: Reserved Bits
These bits are reserved bits and will always read as zero.

¢ Bits 5, 4 - EEPM1 and EEPM0: EEPROM Programming Mode Bits

The EEPROM Programming mode bit setting defines which programming action that will be triggered when writing
EEPE. It is possible to program data in one atomic operation (erase the old value and program the new value) or to
split the Erase and Write operations in two different operations. The Programming times for the different modes are
shown in Table 9-1 on page 35. While EEPE is set, any write to EEPMn will be ignored. During reset, the EEPMn
bits will be reset to Ob00 unless the EEPROM is busy programming.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 34

2549Q-AVR-02/2014

Table 9-1. EEPROM Mode Bits

EEPM1 EEPMO Programming Time Operation
0 0 3.4ms Erase and Write in one operation (Atomic Operation)
0 1 1.8ms Erase only
1 0 1.8ms Write only
1 1 - Reserved for future use

¢ Bit 3 - EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the | bit in SREG is set. Writing EERIE to zero dis-
ables the interrupt. The EEPROM Ready interrupt generates a constant interrupt when EEPE is cleared.

e Bit 2 - EEMPE: EEPROM Master Programming Enable

The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written. When EEMPE is set,
setting EEPE within four clock cycles will write data to the EEPROM at the selected address If EEMPE is zero, set-
ting EEPE will have no effect. When EEMPE has been written to one by software, hardware clears the bit to zero
after four clock cycles. See the description of the EEPE bit for an EEPROM write procedure.

e Bit 1 - EEPE: EEPROM Programming Enable

The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address and data are correctly
set up, the EEPE bit must be written to one to write the value into the EEPROM. The EEMPE bit must be written to
one before a logical one is written to EEPE, otherwise no EEPROM write takes place. The following procedure
should be followed when writing the EEPROM (the order of steps 3 and 4 is not essential):

Wait until EEPE becomes zero.

Wait until SPMEN in SPMCSR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.
Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software must check that the
Flash programming is completed before initiating a new EEPROM write. Step 2 is only relevant if the software con-
tains a Boot Loader allowing the CPU to program the Flash. If the Flash is never being updated by the CPU, step 2
can be omitted. See “Memory Programming” on page 325 for details about Boot programming.

ook wbd =

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the EEPROM Master Write
Enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM access, the
EEAR or EEDR Register will be modified, causing the interrupted EEPROM access to fail. It is recommended to
have the Global Interrupt Flag cleared during all the steps to avoid these problems.

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user software can poll this bit
and wait for a zero before writing the next byte. When EEPE has been set, the CPU is halted for two cycles before
the next instruction is executed.

e Bit 0 - EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct address is set up in
the EEAR Register, the EERE bit must be written to a logic one to trigger the EEPROM read. The EEPROM read
access takes one instruction, and the requested data is available immediately. When the EEPROM is read, the
CPU is halted for four cycles before the next instruction is executed.

/ItmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 35

2549Q-AVR-02/2014

The user should poll the EEPE bit before starting the read operation. If a write operation is in progress, it is neither
possible to read the EEPROM, nor to change the EEAR Register.

9.3 General Purpose registers

9.3.1 GPIOR2 - General Purpose I/0 Register 2

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) | MSB | | | LSB | cPior2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

9.3.2 GPIOR1 - General Purpose I/0 Register 1

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) | msB | | | LSB | criori
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

9.3.3 GPIORO - General Purpose I/0 Register 0

Bit 7 6 5 4 3 2 1 0
Ox1E(0x3E) | MSB LSB | cPioRo
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

9.4 External Memory registers

9.4.1 XMCRA - External Memory Control Register A

Bit 7 6 5 4 3 2 1 0

“(0x74)” I SRE SRL2 SRL1 SRLO SRW11 SRW10 SRWO01 SRW00 I XMCRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - SRE: External SRAM/XMEM Enable

Writing SRE to one enables the External Memory Interface.The pin functions AD7:0, A15:8, ALE, WR, and RD are
activated as the alternate pin functions. The SRE bit overrides any pin direction settings in the respective data
direction registers. Writing SRE to zero, disables the External Memory Interface and the normal pin and data direc-
tion settings are used.

¢ Bit 6:4 — SRL2:0: Wait-state Sector Limit

It is possible to configure different wait-states for different External Memory addresses. The external memory
address space can be divided in two sectors that have separate wait-state bits. The SRL2, SRL1, and SRLO bits
select the split of the sectors, see Table 9-2 on page 37 and Figure 9-1 on page 27. By default, the SRL2, SRLA1,
and SRLO bits are set to zero and the entire external memory address space is treated as one sector. When the
entire SRAM address space is configured as one sector, the wait-states are configured by the SRW11 and SRW10
bits.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 36

2549Q-AVR-02/2014

Table 9-2. Sector limits with different settings of SRL2:0

SRL2 SRL1 SRLO Sector Limits
0 0 X Lower sector = N/A
Upper sector = 0x2200 - OxFFFF
0 1 0 Lower sector = 0x2200 - Ox3FFF
Upper sector = 0x4000 - OxFFFF
0 1 1 Lower sector = 0x2200 - Ox5FFF
Upper sector = 0x6000 - OXFFFF
1 0 0 Lower sector = 0x2200 - Ox7FFF
Upper sector = 0x8000 - OxFFFF
1 0 1 Lower sector = 0x2200 - Ox9FFF
Upper sector = 0xA000 - OxFFFF
1 1 0 Lower sector = 0x2200 - OxBFFF
Upper sector = 0xC000 - OxFFFF
1 1 1 Lower sector = 0x2200 - OXDFFF
Upper sector = OXEOQQO - OxFFFF

¢ Bit 3:2 - SRW11, SRW10: Wait-state Select Bits for Upper Sector
The SRW11 and SRW10 bits control the number of wait-states for the upper sector of the external memory
address space, see Table 9-3.

¢ Bit 1:0 - SRW01, SRWO00: Wait-state Select Bits for Lower Sector
The SRW01 and SRWOO bits control the number of wait-states for the lower sector of the external memory address
space, see Table 9-3.

Table 9-3. Wait States'"

SRWn1 SRWnO Wait States
0 0 No wait-states
0 1 Wait one cycle during read/write strobe
1 0 Wait two cycles during read/write strobe
1 1 Wait two cycles during read/write and wait one cycle before driving out new address

Note: 1. n=0or 1 (lower/upper sector).
For further details of the timing and wait-states of the External Memory Interface, see Figure 9-3 on page 29
through Figure 9-6 on page 31 for how the setting of the SRW bits affects the timing.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 37

2549Q-AVR-02/2014

9.4.2 XMCRB - External Memory Control Register B
Bit 7 6 5 4 3 2 1 0
(0x75) | xmek - - - - XMM2 XMM1 xmMmo | xmcrB
Read/Write R/W R R R R R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
¢ Bit 7- XMBK: External Memory Bus-keeper Enable
Writing XMBK to one enables the bus keeper on the AD7:0 lines. When the bus keeper is enabled, AD7:0 will keep
the last driven value on the lines even if the XMEM interface has tri-stated the lines. Writing XMBK to zero disables
the bus keeper. XMBK is not qualified with SRE, so even if the XMEM interface is disabled, the bus keepers are
still activated as long as XMBK is one.
¢ Bit 6:3 — Res: Reserved Bits
These bits are reserved and will always read as zero. When writing to this address location, write these bits to zero
for compatibility with future devices.
¢ Bit 2:0 - XMM2, XMM1, XMMO: External Memory High Mask
When the External Memory is enabled, all Port C pins are default used for the high address byte. If the full
60Kbytes address space is not required to access the External Memory, some, or all, Port C pins can be released
for normal Port Pin function as described in Table 9-4. As described in “Using all 64Kbytes Locations of External
Memory” on page 32, it is possible to use the XMMn bits to access all 64Kbytes locations of the External Memory.
Table 9-4. Port C Pins Released as Normal Port Pins when the External Memory is Enabled
XMM2 XMM1 XMMO # Bits for External Memory Address Released Port Pins
0 0 0 8 (Full 56Kbytes space) None
0 0 1 7 PC7
0 1 0 6 PC7 - PC6
0 1 1 5 PC7 - PC5
1 0 0 4 PC7 - PC4
1 0 1 3 PC7 - PC3
1 1 0 2 PC7 - PC2
1 1 1 No Address high bits Full Port C
At L ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 38
m e 2549Q-AVR-02/2014

10. System Clock and Clock Options

This section describes the clock options for the AVR microcontroller.

10.1 Overview

Figure 10-1 presents the principal clock systems in the AVR and their distribution. All of the clocks need not be
active at a given time. In order to reduce power consumption, the clocks to modules not being used can be halted
by using different sleep modes, as described in “Power Management and Sleep Modes” on page 50. The clock
systems are detailed below.

Figure 10-1. Clock Distribution.

Asynchronous General /0 Flash and
Timer/Counter Modules ADC CPU Core RAM EEPROM
/ Y 4 A A 4
clKapc
clkyg AVR Clock Clkgey
Control Unit
CIkASV ClkFLASH
A A
Reset Logic Watchdog Timer
I 1 T
Source clock Watchdog clock
System Clock Watchdog
Prescaler Oscillator
A
Clock
Multiplexer
A A A A

Timer/Counter External Clock Crystal Low-frequency Calibrated RC
Oscillator Oscillator Crystal Oscillator Oscillator

10.2 Clock Systems and their Distribution
10.2.1 CPU Clock - clk¢py

The CPU clock is routed to parts of the system concerned with operation of the AVR core. Examples of such mod-
ules are the General Purpose Register File, the Status Register and the data memory holding the Stack Pointer.
Halting the CPU clock inhibits the core from performing general operations and calculations.

10.2.2 I/0 Clock - clko

The 1/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and USART. The I/O clock is
also used by the External Interrupt module, but note that some external interrupts are detected by asynchronous
logic, allowing such interrupts to be detected even if the 1/0 clock is halted. Also note that start condition detection
in the USI module is carried out asynchronously when clkq is halted, TWI address recognition in all sleep modes.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 39

2549Q-AVR-02/2014

10.2.3 F|aSh C|OCk - clkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simultaneously with the
CPU clock.

10.2.4 Asynchronous Timer Clock - clk,gy

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly from an external
clock or an external 32kHz clock crystal. The dedicated clock domain allows using this Timer/Counter as a real-
time counter even when the device is in sleep mode.

10.2.5 ADC Clock - clkppc

The ADC is provided with a dedicated clock domain. This allows halting the CPU and 1/O clocks in order to reduce
noise generated by digital circuitry. This gives more accurate ADC conversion results.

10.3 Clock Sources

The device has the following clock source options, selectable by Flash Fuse bits as shown below. The clock from
the selected source is input to the AVR clock generator, and routed to the appropriate modules.

Table 10-1. Device Clocking Options Select(")

Device Clocking Option CKSEL3:0
Low Power Crystal Oscillator 1111 -1000
Full Swing Crystal Oscillator 0111 -0110

Low Frequency Crystal Oscillator 0101 - 0100
Internal 128kHz RC Oscillator 0011
Calibrated Internal RC Oscillator 0010
External Clock 0000
Reserved 0001

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.
10.3.1 Default Clock Source

The device is shipped with internal RC oscillator at 8.0MHz and with the fuse CKDIV8 programmed, resulting in
1.0MHz system clock. The startup time is set to maximum and time-out period enabled. (CKSEL = "0010", SUT =
"10", CKDIV8 = "0"). The default setting ensures that all users can make their desired clock source setting using
any available programming interface.

10.3.2 Clock Start-up Sequence

Any clock source needs a sufficient V¢ to start oscillating and a minimum number of oscillating cycles before it
can be considered stable.

To ensure sufficient Vo, the device issues an internal reset with a time-out delay (t;o1) after the device reset is
released by all other reset sources. “On-chip Debug System” on page 53 describes the start conditions for the
internal reset. The delay (t;oy7) is timed from the Watchdog Oscillator and the number of cycles in the delay is set
by the SUTx and CKSELXx fuse bits. The selectable delays are shown in Table 10-2 on page 41. The frequency of
the Watchdog Oscillator is voltage dependent as shown in “Typical Characteristics” on page 373.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 40

2549Q-AVR-02/2014

Table 10-2. Number of Watchdog Oscillator Cycles

Typical Time-out (V¢ = 5.0V) Typical Time-out (V¢ = 3.0V) Number of Cycles
Oms Oms 0
4.1ms 4.3ms 512
65ms 69ms 8K (8,192)

Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum V.. The delay will not mon-
itor the actual voltage and it will be required to select a delay longer than the V. rise time. If this is not possible, an
internal or external Brown-Out Detection circuit should be used. A BOD circuit will ensure sufficient V¢ before it
releases the reset, and the time-out delay can be disabled. Disabling the time-out delay without utilizing a Brown-
Out Detection circuit is not recommended.

The oscillator is required to oscillate for a minimum number of cycles before the clock is considered stable. An
internal ripple counter monitors the oscillator output clock, and keeps the internal reset active for a given number of
clock cycles. The reset is then released and the device will start to execute. The recommended oscillator start-up
time is dependent on the clock type, and varies from 6 cycles for an externally applied clock to 32K cycles for a low
frequency crystal.

The start-up sequence for the clock includes both the time-out delay and the start-up time when the device starts
up from reset. When starting up from Power-save or Power-down mode, V¢ is assumed to be at a sulfficient level
and only the start-up time is included.

10.4 Low Power Crystal Oscillator

Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use
as an On-chip Oscillator, as shown in Figure 10-2. Either a quartz crystal or a ceramic resonator may be used.

This Crystal Oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 output. It gives the low-
est power consumption, but is not capable of driving other clock inputs, and may be more susceptible to noise in
noisy environments. In these cases, refer to the “Full Swing Crystal Oscillator” on page 42.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors depends
on the crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the environ-
ment. Some initial guidelines for choosing capacitors for use with crystals are given in Table 10-3 on page 42. For
ceramic resonators, the capacitor values given by the manufacturer should be used.

Figure 10-2. Crystal Oscillator Connections

c2
SN XTAL2
4
ST | xTALY
GND

The Low Power Oscillator can operate in three different modes, each optimized for a specific frequency range. The
operating mode is selected by the fuses CKSELS3:1 as shown in Table 10-3 on page 42.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 41

2549Q-AVR-02/2014

Table 10-3. Low Power Crystal Oscillator Operating Modes®

Frequency Range [MHz] CKSEL3:1™" Recommended Range for Capacitors C1 and C2 [pF]
0.4-0.9 100 -
0.9-3.0 101 12-22
3.0-8.0 110 12-22
8.0 - 16.0% 111 12-22

Notes: 1. This is the recommended CKSEL settings for the different frequency ranges.

2. This option should not be used with crystals, only with ceramic resonators.

3. If BMHz frequency exceeds the specification of the device (depends on V), the CKDIV8 Fuse can be pro-
grammed in order to divide the internal frequency by 8. It must be ensured that the resulting divided clock meets
the frequency specification of the device.

4. Maximum frequency when using ceramic oscillator is 10MHz.

The CKSELO Fuse together with the SUT1:0 Fuses select the start-up times as shown in Table 10-4.

Table 10-4. Start-up Times for the Low Power Crystal Oscillator Clock Selection

Additional Delay
Start-up Time from Power- from Reset
Oscillator Source / Power Conditions down and Power-save (Vce = 5.0V) CKSELO SUT1:0
Ceramic resonator, fast rising power 258CK 14CK + 4.1ms(" 0 00
Ceramic resonator, slowly rising power 258CK 14CK + 65ms(" 0 01
Ceramic resonator, BOD enabled 1KCK 14CK®@ 0 10
Ceramic resonator, fast rising power 1KCK 14CK + 4.1ms®@ 0 11
Ceramic resonator, slowly rising power 1KCK 14CK + 65ms® 1 00
Crystal Oscillator, BOD enabled 16KCK 14CK 1 01
Crystal Oscillator, fast rising power 16KCK 14CK + 4.1ms 1 10
Crystal Oscillator, slowly rising power 16KCK 14CK + 65ms 1 11

Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and only if
frequency stability at start-up is not important for the application. These options are not suitable for crystals.
2. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up. They can
also be used with crystals when not operating close to the maximum frequency of the device, and if frequency sta-
bility at start-up is not important for the application.

10.5 Full Swing Crystal Oscillator

Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use
as an On-chip Oscillator, as shown in Figure 10-2 on page 41. Either a quartz crystal or a ceramic resonator may
be used.

This Crystal Oscillator is a full swing oscillator, with rail-to-rail swing on the XTAL2 output. This is useful for driving
other clock inputs and in noisy environments. The current consumption is higher than the “Low Power Crystal
Oscillator” on page 41. Note that the Full Swing Crystal Oscillator will only operate for Vs = 2.7 - 5.5 volts.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors depends
on the crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the environ-
ment. Some initial guidelines for choosing capacitors for use with crystals are given in Table 10-6 on page 43. For
ceramic resonators, the capacitor values given by the manufacturer should be used.

The operating mode is selected by the fuses CKSEL3:1 as shown in Table 10-5 on page 43.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 42

2549Q-AVR-02/2014

Table 10-5. Full Swing Crystal Oscillator operating modes"

Frequency Range [MHz] CKSEL3:1 Recommended Range for Capacitors C1 and C2 [pF]
0.4-16 011 12-22

Note: 1. If 8MHz frequency exceeds the specification of the device (depends on V), the CKDIV8 Fuse can be pro-
grammed in order to divide the internal frequency by 8. It must be ensured that the resulting divided clock meets
the frequency specification of the device.

Table 10-6. Start-up Times for the Full Swing Crystal Oscillator Clock Selection

Oscillator Source / Power | Start-up Time from Power- | Additional Delay from Reset
Conditions down and Power-save (Vcc = 5.0V) CKSELO SUT1:0
Ceramic resonator, 258 CK 14CK + 4.1ms(0 00
fast rising power
Ceramlg resonator, 258 CK 14CK + 65ms(" 0 01
slowly rising power
Ceramic resonator,)
BOD enabled 1K CK 14CK 0 10
Ceramic resonator, 1K CK 14CK + 4.1ms® 0 11
fast rising power
Ceramic resonator, 1K CK 14CK + 65ms® 1 00
slowly rising power
Crystal Oscillator,
BOD enabled 16K CK 14CK 1 01
Crystal Oscillator, 16K CK 14CK + 4.1ms 1 10
fast rising power
Crystall Qscﬂlator, 16K CK 14CK + 65ms 1 11
slowly rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the device, and only if
frequency stability at start-up is not important for the application. These options are not suitable for crystals.
2. These options are intended for use with ceramic resonators and will ensure frequency stability at start-up. They can
also be used with crystals when not operating close to the maximum frequency of the device, and if frequency sta-
bility at start-up is not important for the application.

10.6 Low Frequency Crystal Oscillator

The device can utilize a 32.768kHz watch crystal as clock source by a dedicated Low Frequency Crystal Oscillator.
The crystal should be connected as shown in Figure 10-3 on page 44. When this Oscillator is selected, start-up
times are determined by the SUT Fuses and CKSELO as shown in Table 10-8 on page 44.

The Low-Frequency Crystal Oscillator provides an internal load capacitance, see Table 10-7 at each XTAL/TOSC

pin.
Table 10-7. Capacitance for Low frequency oscillator
Device 32kHz oscillator Cap (Xtal1/Tosc1) Cap (Xtal2/Tosc2)
ATmega640/1280/1281/2560/2561 System Osc. 18pF 8pF
Timer Osc. 6pF 6pF
/lt L ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 43
m e 2549Q-AVR-02/2014

The capacitance (Ce + Ci) needed at each XTAL/TOSC pin can be calculated by using:
Ce+Ci=2"CL-C;
where:
Ce - is optional external capacitors as described in Figure 10-3.
Ci - is the pin capacitance in Table 10-7 on page 43.
CL - is the load capacitance for a 32.768kHz crystal specified by the crystal vendor.
Cg - is the total stray capacitance for one XTAL/TOSC pin.
Crystals specifying load capacitance (CL) higher than the ones given in the Table 10-7 on page 43, require exter-

nal capacitors applied as described in Figure 10-3.

Figure 10-3. Crystal Oscillator Connections

TOSC2

To find suitable load capacitance for a 32.768kHz crystal, consult the crystal datasheet.

When this oscillator is selected, start-up times are determined by the SUT Fuses and CKSELO as shown in Table

10-8.
Table 10-8. Start-up times for the low frequency crystal oscillator clock selection
Start-up Time from Power-down Additional Delay from Reset
Power Conditions and Power-save (Vg =5.0V) CKSELO SUT1:0
BOD enabled 1K CK 14CK™ 0 00
Fast rising power 1K CK 14CK + 4.1ms™ 0 01
Slowly rising power 1K CK 14CK + 65ms(! 0 10
Reserved 0 11
BOD enabled 32K CK 14CK 1 00
Fast rising power 32K CK 14CK + 4.1ms 1 01
Slowly rising power 32K CK 14CK + 65ms 1 10
Reserved 1 11
Note: 1. These options should only be used if frequency stability at start-up is not important for the application.
At M eL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 44

2549Q-AVR-02/2014

10.7 Calibrated Internal RC Oscillator

By default, the Internal RC Oscillator provides an approximate 8MHz clock. Though voltage and temperature
dependent, this clock can be very accurately calibrated by the user. See Table 31-1 on page 359 and “Internal
Oscillator Speed” on page 392 for more details. The device is shipped with the CKDIV8 Fuse programmed. See
“System Clock Prescaler” on page 47 for more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as shown in Table 10-9. If
selected, it will operate with no external components. During reset, hardware loads the pre-programmed calibration
value into the OSCCAL Register and thereby automatically calibrates the RC Oscillator. The accuracy of this cali-
bration is shown as Factory calibration in Table 31-1 on page 359.

By changing the OSCCAL register from SW, see “OSCCAL — Oscillator Calibration Register” on page 48, it is pos-
sible to get a higher calibration accuracy than by using the factory calibration. The accuracy of this calibration is
shown as User calibration in Table 31-1 on page 359.

When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the Watchdog Timer and
for the Reset Time-out. For more information on the pre-programmed calibration value, see the section “Calibration
Byte” on page 328.
Table 10-9. Internal Calibrated RC Oscillator Operating Modes!"®
Frequency Range [MHz] CKSEL3:0

7.3-8.1 0010

Notes: 1. The device is shipped with this option selected.
2. If BMHz frequency exceeds the specification of the device (depends on V), the CKDIV8 Fuse can be pro-
grammed in order to divide the internal frequency by 8.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in Table 10-10.

Table 10-10. Start-up times for the internal calibrated RC Oscillator clock selection

Start-up Time from Power-down and Additional Delay from Reset
Power Conditions Power-save (Vee =5.0V) SUT1:0
BOD enabled 6CK 14CK 00
Fast rising power 6CK 14CK + 4.1ms 01
Slowly rising power 6CK 14CK + 65ms(" 10
Reserved 11

Note: 1. The device is shipped with this option selected.

10.8 128kHz Internal Oscillator

The 128kHz internal Oscillator is a low power Oscillator providing a clock of 128kHz. The frequency is nominal at
3V and 25°C. This clock may be select as the system clock by programming the CKSEL Fuses to “11” as shown in
Table 10-11.
Table 10-11. 128kHz Internal Oscillator Operating Modes!")
Nominal Frequency CKSEL3:0

128kHz 0011

Note: 1. Note that the 128kHz oscillator is a very low power clock source, and is not designed for high accuracy.
When this clock source is selected, start-up times are determined by the SUT Fuses as shown in Table 10-12 on
page 46.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 45

2549Q-AVR-02/2014

Table 10-12. Start-up Times for the 128kHz Internal Oscillator

Start-up Time from Power-down and
Power Conditions Power-save Additional Delay from Reset SUT1:0
BOD enabled 6CK 14CK 00
Fast rising power 6CK 14CK + 4ms 01
Slowly rising power 6CK 14CK + 64ms 10
Reserved 11

10.9 External Clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure 10-4. To run the
device on an external clock, the CKSEL Fuses must be programmed to “0000”.

Figure 10-4. External Clock Drive Configuration

NC ——— XTAL2
EXTERNAL
CLOCK —— XTAL1
SIGNAL
GND

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in Table 10-15 on

page 49.
Table 10-13. Crystal Oscillator Clock Frequency
Nominal Frequency CKSEL3:0
0 - 16MHz 0000

Table 10-14. Start-up Times for the External Clock Selection

Start-up Time from Power-down and Additional Delay from Reset
Power Conditions Power-save (Vce = 5.0V) SUT1:0
BOD enabled 6CK 14CK 00
Fast rising power 6CK 14CK + 4.1ms 01
Slowly rising power 6CK 14CK + 65ms 10
Reserved 11

When applying an external clock, it is required to avoid sudden changes in the applied clock frequency to ensure
stable operation of the MCU. A variation in frequency of more than 2% from one clock cycle to the next can lead to
unpredictable behavior. If changes of more than 2% is required, ensure that the MCU is kept in Reset during the
changes.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal clock frequency
while still ensuring stable operation. Refer to “System Clock Prescaler’ on page 47 for details.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 46

2549Q-AVR-02/2014

10.10 Clock Output Buffer

The device can output the system clock on the CLKO pin. To enable the output, the CKOUT Fuse has to be pro-
grammed. This mode is suitable when the chip clock is used to drive other circuits on the system. The clock also
will be output during reset, and the normal operation of 1/0O pin will be overridden when the fuse is programmed.
Any clock source, including the internal RC Oscillator, can be selected when the clock is output on CLKO. If the
System Clock Prescaler is used, it is the divided system clock that is output.

10.11 Timer/Counter Oscillator

The device can operate its Timer/Counter2 from an external 32.768kHz watch crystal or a external clock source.
See Figure 10-2 on page 41 for crystal connection.

Applying an external clock source to TOSC1 requires EXCLK in the ASSR Register written to logic one. See “Asyn-
chronous Operation of Timer/Counter2” on page 179 for further description on selecting external clock as input
instead of a 32kHz crystal.

10.12 System Clock Prescaler

The ATmega640/1280/1281/2560/2561 has a system clock prescaler, and the system clock can be divided by set-
ting the “CLKPR — Clock Prescale Register” on page 48. This feature can be used to decrease the system clock
frequency and the power consumption when the requirement for processing power is low. This can be used with all
clock source options, and it will affect the clock frequency of the CPU and all synchronous peripherals. clkj,q,
Clkapc, Clkepy, and clkg gy are divided by a factor as shown in Table 10-15 on page 49.

When switching between prescaler settings, the System Clock Prescaler ensures that no glitches occurs in the
clock system. It also ensures that no intermediate frequency is higher than neither the clock frequency correspond-
ing to the previous setting, nor the clock frequency corresponding to the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock, which may be faster
than the CPU's clock frequency. Hence, it is not possible to determine the state of the prescaler - even if it were
readable, and the exact time it takes to switch from one clock division to the other cannot be exactly predicted.
From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2 x T2 before the new clock fre-
quency is active. In this interval, 2 active clock edges are produced. Here, T1 is the previous clock period, and T2
is the period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed to change the
CLKPS bits:

Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in CLKPR to zero.
Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is not interrupted.

AtmeL ATmega640/V-1280/V-1281/V-2560/V-2561/V [DATASHEET] 47

2549Q-AVR-02/2014

10.13 Register Description

10.13.1 OSCCAL - Oscillator Calibration Register

Bit 7 6 5 4 3 2 1 0

(0x66) | caAz CAL6 | CALS | CAL4 CAL3 CAL2 CAL1 CALO | OsccAL
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

e Bits 7:0 — CAL7:0: Oscillator Calibration Value

The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to remove process varia-
tions from the oscillator frequency. A pre-programmed calibration value is automatically written to this register
during chip reset, giving the Factory calibrated frequency as specified in Table 31-1 on page 359. The application
software can write this register to change the oscillator frequency. The oscillator can be calibrated to frequencies
as specified in Table 31-1 on page 359. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write times will be affected
accordingly. If the EEPROM or Flash are written, do not calibrate to more than 8.8MHz. Otherwise, the EEPROM
or Flash write may fail.

The CAL?7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the lowest frequency
range, setting this bit to 1 gives the highest frequency range. The two frequency ranges are overlapping, in other
words a setting of OSCCAL = Ox7F gives a higher frequency than OSCCAL = 0x80.

The CALS..0 bits are used to tune the frequency within the selected range. A setting of 0x00 gives the lowest fre-
quency in that range, and a setting of Ox7F gives the highest frequency in the range.

10.13.2 CLKPR - Clock Prescale Register

Bit 7 6 5 4 3 2 1 0

(0x61) | cLkpcE | - | - - CLKPS3 CLKPS2 CLKPS1 cLkeso | CLKPR
Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

e Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE bit is only updated
when the other bits in CLKPR are simultaneously written to zero. CLKPCE is cleared by hardware four cycles after
it is written or when CLKPS bits are written. Rewriting the CLKPCE bit within this time-out period does neither
extend the time-out period, nor clear the CLKPCE bit.

¢ Bits 3:0 — CLKPS3:0: Clock Prescaler Select Bits 3 -0

These bits define the division factor between the selected clock source and the internal system clock. These bits
can be written run-time to vary the clock frequency to suit the application requirements. As the divider divides the
master clock input to the MCU, the speed of all synchronous peripherals is reduced when a division factor is used.
The division factors are given in Table 10-15 on page 49.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed, the CLKPS bits will
be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to “0011”, giving a division factor of 8 at start
up. This feature should be used if the selected clock source has a higher frequency than the maximum frequency
of the device at the present operating conditions. Note that any value can be written to the CLKPS bits regardless
of the CKDIV8 Fuse setting. The Application software must ensure t