2N5088, 2N5089 ## **Amplifier Transistors** ### **NPN Silicon** ### **Features** • Pb-Free Packages are Available* #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|-----------------------------------|-------------|-------------| | | 5088
5089 | 30
25 | Vdc | | | 5088
5089 | 35
30 | Vdc | | Emitter – Base Voltage | V _{EBO} | 3.0 | Vdc | | Collector Current – Continuous | Ic | 50 | mAdc | | Total Device Dissipation @ T _A = 25°C Derate above 25°C | P _D | 625
5.0 | mW
mW/°C | | Total Device Dissipation @ T _C = 25°C Derate above 25°C | C P _D | 1.5
12 | W
mW/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -55 to +150 | °C | ### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--|-----------------|------|------| | Thermal Resistance, Junction-to-Ambient (Note 1) | $R_{\theta JA}$ | 200 | °C/W | | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 83.3 | °C/W | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. $R_{\theta JA}$ is measured with the device soldered into a typical printed circuit board. ### ON Semiconductor® ### http://onsemi.com ### **MARKING DIAGRAM** x = 8 or 9 A = Assembly Location Y = Year WW = Work Week ■ = Pb–Free Package (Note: Microdot may be in either location) ### ORDERING INFORMATION | Device | Package | Shipping [†] | |-------------|--------------------|-----------------------| | 2N5088G | TO-92
(Pb-Free) | 5000 Units/Bulk | | 2N2088RLRAG | TO-92
(Pb-Free) | 2000/Tape & Reel | | 2N5089G | TO-92
(Pb-Free) | 5000 Units/Bulk | | 2N2089RLRE | TO-92 | 2000/Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### 2N5088, 2N5089 ### $\textbf{ELECTRICAL CHARACTERISTICS} \; (T_A = 25^{\circ}C \; unless \; otherwise \; noted)$ | Characteristic | | Symbol | Min | Max | Unit | |---|------------------|----------------------|------------|--------------|------| | OFF CHARACTERISTICS | | | • | | | | Collector – Emitter Breakdown Voltage (Note 2) $(I_C = 1.0 \text{ mAdc}, I_B = 0)$ | 2N5088
2N5089 | V _{(BR)CEO} | 30
25 | -
- | Vdc | | Collector – Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$) | 2N5088
2N5089 | V _{(BR)CBO} | 35
30 | -
- | Vdc | | Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 15 \text{ Vdc}, I_E = 0)$ | 2N5088
2N5089 | I _{CBO} | -
- | 50
50 | nAdc | | Emitter Cutoff Current | | I _{EBO} | -
- | 50
100 | nAdc | | ON CHARACTERISTICS | | | • | • | | | DC Current Gain ($I_C = 100 \mu Adc$, $V_{CE} = 5.0 Vdc$) | 2N5088
2N5089 | h _{FE} | 300
400 | 900
1200 | - | | $(I_C = 1.0 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc})$ | 2N5088
2N5089 | | 350
450 | -
- | | | $(I_C = 10 \text{ mAdc}, V_{CE} = 5.0 \text{ Vdc}) \text{ (Note 2)}$ | 2N5088
2N5089 | | 300
400 | -
- | | | Collector – Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1.0 mAdc) | | V _{CE(sat)} | _ | 0.5 | Vdc | | Base – Emitter On Voltage
(I _C = 10 mAdc, V _{CE} = 5.0 Vdc) (Note 2) | | V _{BE(on)} | _ | 0.8 | Vdc | | SMALL-SIGNAL CHARACTERISTICS | | | | | | | Current – Gain – Bandwidth Product ($I_C = 500 \mu Adc$, $V_{CE} = 5.0 Vdc$, $f = 20 MHz$) | | f _T | 50 | _ | MHz | | Collector–Base Capacitance
(V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz) | | C _{cb} | _ | 4.0 | pF | | Emitter-Base Capacitance
(V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz) | | C _{eb} | _ | 10 | pF | | Small–Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz) | 2N5088
2N5089 | h _{fe} | 350
450 | 1400
1800 | - | | Noise Figure (I _C = 100 μ Adc, V _{CE} = 5.0 Vdc, R _S = 1.0 k Ω , f = 1.0 kHz) | 2N5088
2N5089 | NF | -
- | 3.0
2.0 | dB | ^{2.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%. Figure 1. Transistor Noise Model ### 2N5088, 2N5089 ### **NOISE CHARACTERISTICS** $(V_{CE} = 5.0 \text{ Vdc}, T_A = 25^{\circ}C)$ ### **NOISE VOLTAGE** BANDWIDTH = 1.0 Hz 20 en, NOISE VOLTAGE (nV) $R_S \approx 0$ f = 10 Hz 10 100 Hz 7.0 5.0 3.0 0.01 0.02 0.1 0.2 0.5 2.0 5.0 0.05 1.0 10 IC, COLLECTOR CURRENT (mA) Figure 2. Effects of Frequency **Figure 3. Effects of Collector Current** Figure 4. Noise Current Figure 5. Wideband Noise Figure Figure 6. Total Noise Voltage Figure 7. Noise Figure Figure 8. DC Current Gain Figure 9. "On" Voltages Figure 11. Capacitance Figure 12. Current-Gain — Bandwidth Product TO-92 (TO-226) 1 WATT CASE 29-10 **ISSUE A** **DATE 08 MAY 2012** STRAIGHT LEAD **BENT LEAD** #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI - 714.5M, 1994. CONTROLLING DIMENSION: INCHES. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. - UNION HOLLEU. DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS L AND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM. | | INC | HES | MILLIN | IETERS | |-----|-------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.175 | 0.205 | 4.44 | 5.21 | | В | 0.290 | 0.310 | 7.37 | 7.87 | | С | 0.125 | 0.165 | 3.18 | 4.19 | | D | 0.018 | 0.021 | 0.46 | 0.53 | | F | 0.016 | 0.019 | 0.41 | 0.48 | | G | 0.045 | 0.055 | 1.15 | 1.39 | | Н | 0.095 | 0.105 | 2.42 | 2.66 | | J | 0.018 | 0.024 | 0.46 | 0.61 | | K | 0.500 | | 12.70 | | | L | 0.250 | | 6.35 | | | N | 0.080 | 0.105 | 2.04 | 2.66 | | Р | | 0.100 | | 2.54 | | R | 0.135 | | 3.43 | | | ٧ | 0.135 | | 3.43 | | - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME - CONTROLLING DIMENSION: INCHES. CONTOUR OF PACKAGE BEYOND DIMENSION R IS - UNCONTROLLED. DIMENSION F APPLIES BETWEEN DIMENSIONS P AND L. DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS L AND K MINIMUM. THE LEAD DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM. | | INC | HES | MILLIN | IETERS | |-----|-------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.175 | 0.205 | 4.44 | 5.21 | | В | 0.290 | 0.310 | 7.37 | 7.87 | | С | 0.125 | 0.165 | 3.18 | 4.19 | | D | 0.018 | 0.021 | 0.46 | 0.53 | | G | 0.094 | 0.102 | 2.40 | 2.80 | | J | 0.018 | 0.024 | 0.46 | 0.61 | | K | 0.500 | | 12.70 | | | N | 0.080 | 0.105 | 2.04 | 2.66 | | P | | 0.100 | | 2.54 | | R | 0.135 | | 3.43 | | | ٧ | 0.135 | | 3.43 | | ### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repo
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-----------------------|--|-------------|--| | DESCRIPTION: | TO-92 (TO-226) 1 WATT | | PAGE 1 OF 2 | | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. # **TO-92 (TO-226) 1 WATT** CASE 29-10 ISSUE A ### DATE 08 MAY 2012 | STYLE 1:
PIN 1.
2.
3. | EMITTER
BASE
COLLECTOR | STYLE 2:
PIN 1.
2.
3. | BASE
EMITTER
COLLECTOR | STYLE 3:
PIN 1.
2.
3. | ANODE
ANODE
CATHODE | STYLE 4:
PIN 1.
2.
3. | CATHODE
CATHODE
ANODE | STYLE 5:
PIN 1.
2.
3. | DRAIN
SOURCE
GATE | |--------------------------------|---------------------------------------|---------------------------------|--|---------------------------------|-------------------------------------|---------------------------------|-----------------------------------|---------------------------------|-----------------------------------| | | GATE
SOURCE & SUBSTRATE
DRAIN | STYLE 7:
PIN 1.
2.
3. | SOURCE
DRAIN
GATE | STYLE 8:
PIN 1.
2.
3. | DRAIN
GATE
SOURCE & SUBSTRATE | STYLE 9:
PIN 1.
2.
3. | BASE 1
EMITTER
BASE 2 | STYLE 10:
PIN 1.
2.
3. | CATHODE
GATE
ANODE | | 2. | ANODE
CATHODE & ANODE
CATHODE | STYLE 12:
PIN 1.
2.
3. | MAIN TERMINAL 1
GATE
MAIN TERMINAL 2 | STYLE 13:
PIN 1.
2.
3. | ANODE 1
GATE
CATHODE 2 | STYLE 14:
PIN 1.
2.
3. | EMITTER
COLLECTOR
BASE | STYLE 15:
PIN 1.
2.
3. | ANODE 1
CATHODE
ANODE 2 | | PIN 1.
2. | ANODE | PIN 1. | COLLECTOR
BASE
EMITTER | STYLE 18:
PIN 1.
2.
3. | ANODE | STYLE 19:
PIN 1.
2.
3. | GATE
ANODE
CATHODE | 2. | NOT CONNECTED
CATHODE
ANODE | | PINI 1 | COLLECTOR
EMITTER
BASE | PIN 1. | SOURCE | PIN 1. | GATE | PIN 1.
2. | EMITTER | PIN 1.
2. | MT 1 | | | V _{CC}
GROUND 2
OUTPUT | STYLE 27:
PIN 1.
2.
3. | MT
SUBSTRATE
MT | 2. | CATHODE
ANODE
GATE | 2. | NOT CONNECTED
ANODE
CATHODE | 2. | DRAIN
GATE
SOURCE | | PIN 1.
2. | GATE
DRAIN
SOURCE | PIN 1. | BASE | PIN 1.
2. | RETURN
INPUT
OUTPUT | PIN 1.
2. | INPUT
GROUND
LOGIC | | | | DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Reposito
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-----------------------|--|-------------|--| | DESCRIPTION: | TO-92 (TO-226) 1 WATT | | PAGE 2 OF 2 | | ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative