

DC to 5 MHz Bandwidth, Galvanically Isolated, High-Accuracy Current Sensor IC with Reference Output (ACS37030) or Fault (ACS37032)

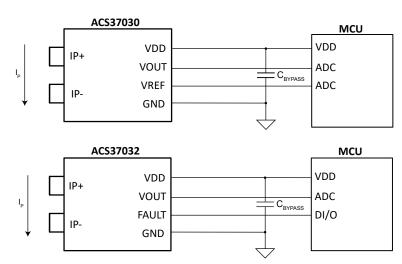
FEATURES AND BENEFITS

- High operating bandwidth for fast control loops or where high-speed switching currents are monitored
 DC to 5 MHz bandwidth
 - \Box 40 ns typical response time
- High accuracy and low noise
 ±2% sensitivity error over temperature
 ±10 mV maximum offset voltage over temperature
 50 mA_{RMS} input referred noise
 - \square 3.3 V non-ratiometric supply operation
 - Differential sensing immune to external magnetic fields
- VREF output voltage for differential routing in noisy application environments (ACS37030)
- FAULT output for fast open drain overcurrent detection (ACS37032)
- Highly isolated compact surface-mount package

 3500 V_{RMS} rated isolation voltage
 840 V_{RMS} / 1188 V_{DC} basic isolation voltages
 420 V_{RMS} / 594 V_{DC} reinforced isolation voltages
- Wide operating temperature, -40°C to 150°C
- AEC-Q100 qualified

PACKAGE:

6-pin SOIC (suffix LZ) Not to scale


DESCRIPTION

The ACS37030/2 is a fully integrated current sensor IC that senses current flowing through the primary conductor. Two signal paths are used: a Hall-effect element path to capture DC and low-frequency current information, and an inductive coil path to capture high-frequency current information. These two paths are summed to allow for sensing of a wide frequency band with a single device. The properties of the coil increase SNR as frequency increases, minimizing noise seen at the output.

The internal construction provides high isolation by magnetically coupling the field generated by current flow in the conductor to the fully monolithic Hall and coil IC. The current is sensed differentially by two Hall plates and two coils that subtract out interfering common-mode magnetic fields. The IC has no physical connection to the integrated current conductor and provides a 3500 V_{RMS} isolation voltage between the primary and secondary signal leads of the package. This high rating provides a basic working voltage of 840 V_{RMS}.

Both zero current reference (ACS37030) and overcurrent fault with internal pull up (ACS37032) options are available.

The ACS37030/32 is provided in a six-lead custom SOIC surface mount package with the current conductor leads formed together for a reduced resistance of 0.6 m Ω . The leadframe is plated with 100% matte tin, which is compatible with standard lead (Pb) free printed circuit board assembly processes. Internally, the device is Pb-free.

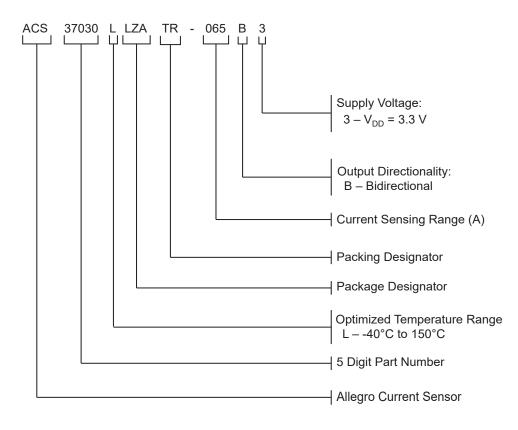


Figure 1: Typical Application Circuit

The ACS37030/32 outputs an analog signal, V_{OUT} , that varies linearly with the bidirectional AC or DC primary current, I_{p} , within the range specified.

SELECTION GUIDE

Part Number	Current Sensing Range, I _{PR} (A)	Sensitivity (mV/A)	V _{DD} (V)	V _{QVO} (V)	Optimized Temperature Range T _A (°C)	Packing
ACS37030LLZATR-020B3	±20	66				
ACS37030LLZATR-040B3	±40	33		1.65	-40 to 150	
ACS37030LLZATR-065B3	±65	20.3	3.3			Tape and reel, 3000
ACS37032LLZATR-020B3	±20	66	3.3 1.03			pieces per reel
ACS37032LLZATR-040B3	±40	33				
ACS37032LLZATR-065B3	±65	20.3				

ABSOLUTE MAXIMUM RATINGS^[1]

Characteristic	Symbol	Notes	Rating	Unit
Supply Voltage	V _{DD}		–0.5 to 4	V
Forward Output Voltage	Vo	Applies to $V_{OUT,} V_{REF}$, and FAULT	–0.5 to V _{DD} + 0.5 (< 3.8)	V
Operating Ambient Temperature	T _A	L temperature range	-40 to 150	°C
Storage Temperature	T _{stg}		–65 to 165	°C
Maximum Junction Temperature	T _{J(max)}		165	°C

^[1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

ISOLATION CHARACTERISTICS

Characteristic	Symbol	Notes	Value	Units
Withstand Strength ^{[1][2]}	V _{ISO}	Agency rated for 60 seconds per UL 62368-1 (edition 3)	3500	V _{RMS}
Impulse Withstand	VIMPULSE	Tested ±5 pulses at 2/minute in compliance to IEC 61000-4-5, 1.2 μs (rise) / 50 μs (width)	5000	V _{PK}
Working Voltage for Basic Isolation [2]	V	Maximum approved working voltage for basic (single) isolation	1188	V _{PK or} V _{DC}
	V _{WVBI}	according to UL 62368-1 (edition 3)	840	V _{RMS}
Working Voltage for Reinforced	V	Maximum approved working voltage for reinforced isolation according	594	V _{PK or} V _{DC}
Isolation ^[2]	V _{WVRI}	to UL 62368-1 (edition 3)	420	V _{RMS}
Clearance	D _{CL}	Minimum distance through air from IP leads to signal leads	4.2	mm
Creepage	D _{CR}	Minimum distance along package body from IP leads to signal leads	4.2	mm
Distance Through Insulation	DTI	Minimum internal distance through insulation	54	μm
Comparative Tracking Index	СТІ	Material Group I	>600	V

^[1] Production tested for 1 second in accordance with UL 62368-1 (edition 3). ^[2] Certification pending.

PACKAGE CHARACTERISTICS

Characteristic	Symbol	Notes	Min.	Тур.	Max.	Unit
Internal Conductor Resistance	R _{IC}	$T_A = 25^{\circ}C$	_	0.68	-	mΩ
Internal Conductor Inductance	L _{IC}	T _A = 25°C	_	2.4	-	nH
Moisture Sensitivity Level	MSL	Per IPC/JEDEC J-STD-020	_	2	-	-

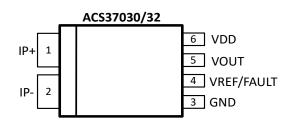


Figure 2: LZ Package Pinout Diagram

Terminal List

Number	Name	Description
1	IP+	Positive terminal for current being sensed
2	IP-	Negative terminal for current being sensed
3	GND	Device ground terminal
4	VREF/FAULT	Reference or overcurrent fault output
5	VOUT	Analog output signal
6	VDD	Device power supply terminal

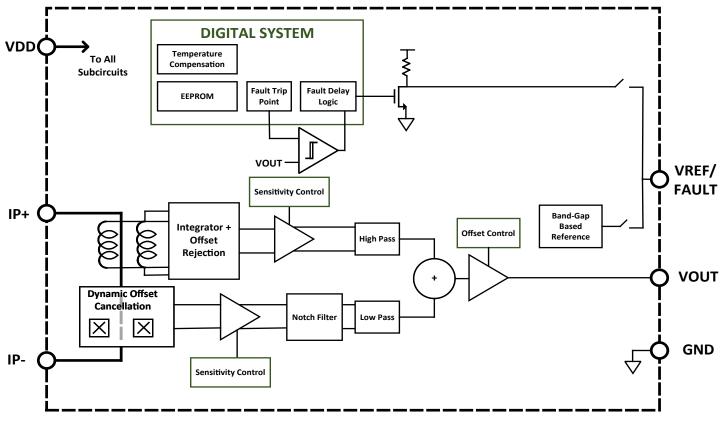


Figure 3: Functional Block Diagram

DC to 5 MHz Bandwidth, Galvanically Isolated, High-Accuracy Current Sensor IC with Reference Output (ACS37030) or Fault (ACS37032)

COMMON ELECTRICAL CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C, $C_{BYPASS} = 0.1 \mu$ F, and $V_{DD} = 3.3 \text{ V}$, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Supply Voltage	V _{DD}		3	3.3	3.6	V
Supply Current	I _{DD}	V_{DD} = 3.3 V, no load on V_{OUT} or V_{REF}	_	20	30	mA
Supply Bypass Capacitor	C _{BYPASS}	VDD to GND	0.1	-	-	μF
Output Capacitive Load	C _{L_VOUT}	VOUT to GND	-	-	100	pF
Power-On Reset Voltage	V _{POR}	V _{DD} rising 1 V/ms	2.6	2.9	3	V
POR Hysteresis	V _{POR_HYS}		200	250	-	mV
Power-On Time	t _{PO}		_	2	4	ms
OUTPUT SIGNAL CHARACTERI	STICS (VOUT)					
	V _{SAT_H}	$R_L = 50 \text{ k}\Omega \text{ to GND}$	3	-	-	V
Saturation Voltage	V _{SAT_L}	$R_L = 50 \text{ k}\Omega \text{ to } V_{DD}$	-	-	0.15	V
VOUT Short Circuit Current	т	$T_A = 25^{\circ}C$, shorted to GND	-	25	-	mA
VOOT Short Circuit Current	I _{SC_VOUT}	$T_A = 25^{\circ}C$, shorted to VDD	-	-25	-	mA
Bandwidth	BW	Small signal –3 dB, C _L = 100 pF	_	5	-	MHz
Rise Time	t _R	T _A = 25°C, C _L = 100 pF	_	40	-	ns
Response Time	t _{RESP}	$T_A = 25^{\circ}C, C_L = 100 \text{ pF}$	_	40	_	ns
Propagation Delay	t _{PD}	T _A = 25°C, C _L = 100 pF	_	30	_	ns
Noise	I _N	BW = 5 MHz, T _A = 25°C, C _L = 100 pF	_	50	_	mA _{RMS}
Common-Mode Field Rejection	CMFR	Input-referred error due to a common-mode field	_	0.9	-	mA/G
REFERENCE OUTPUT CHARACT	ERISTICS (VRE	F)				
VREF Resistive Load	R _{L_VREF}	VREF to GND or VREF to VDD	50	-	-	kΩ
VREF Capacitive Load	C _{L_VREF}	VREF to GND	_	-	100	pF
Reference Source Current Limit	I _{SC_VREF}	VREF shorted to GND	-	25	-	mA
Reference Source Current Limit	I _{SK_VREF}	VREF shorted to VDD	-	-25	-	mA
FAULT OUTPUT CHARACTERIST	ICS					·
Overcurrent Operating Range	I _{OCR}		90	100	110	%
Internal Overcurrent Pull-Up Resistance	R _{L_IFAULT}		_	10	_	kΩ
Overcurrent Error	E _{oc}		-10	_	10	%I _{OCR} [1]
FAULT Output Low Voltage	V _{FAULT_L}	$R_{L FAULT}$ = 10 kΩ, fault condition present	_	0.1	0.4	V
FAULT Leakage Current	I _{FAULT_OFF}	$R_{L_{FAULT}} = 10 \text{ k}\Omega$, no fault condition present	_	100	500	nA
Overcurrent Hysteresis	I _{OC_HYS}		_	6	10	%I _{PR}
Overcurrent Response Time [2]	t _{OC_RESP}		_	50	_	ns
Overcurrent Release Time [2]	t _{OC REL}		_	100	_	ns
Overcurrent Hold Time [2]	t _{OC HLD}		_	0.1	_	ms

 $^{[1]}$ Where ${\rm I}_{\rm OCR}$ is the specific point at which the OCF trigger will occur. $^{[2]}$ Guaranteed by design and bench validated.

DC to 5 MHz Bandwidth, Galvanically Isolated, High-Accuracy Current Sensor IC with Reference Output (ACS37030) or Fault (ACS37032)

ACS37030LLZATR-020B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C. C_{BVDASS} = 0.1 µF, and V_{DD} = 3.3 V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ^[1]	Max.	Units
NOMINAL PERFORMANCE			•	·		
Current Sensing Range	I _{PR}		-20	-	20	A
Sensitivity	Sens	$I_{PR(min)} < I_P < I_{PR(max)}$	-	66	_	mV/A
Quiescent Voltage Output	V _{QVO}	I _P = 0 A	-	1.65	_	V
Reference Voltage Output	V _{REF}		-	1.65	-	V
ERROR COMPONENTS						
Sopoitivity Error	E	$I_P = I_{PR(max)}$, $T_A = -40^{\circ}$ C to 150°C, DC	-2	±1	2	%
Sensitivity Error	E _{SENS}	$I_{P}=I_{PR(max)}, T_{A}=-40^{\circ}C \text{ to } 150^{\circ}C, 500 \text{ kHz}$	-	±2	-	%
Offset Error	V _{OE}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	±5	10	mV
Reference Voltage Output Error	V _{REF_E}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ} \text{C} \text{ to } 150^{\circ} \text{C}$	-10	±5	10	mV
Quiescent Voltage Output Error	V _{QVO_E}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	±5	10	mV
Power Supply Offset Error	V _{OE_PS}	3.15 to 3.45 V, T _A = 25°C	-5	±3	5	mV
Power Supply Sensitivity Error	E _{SENS_PS}	3.15 to 3.45 V, T _A = 25°C	-1.5	±1	1.5	%
ERROR INCLUDING LIFETIME D	RIFT ^[2]					
Hall Path Sensitivity Error Including Lifetime Drift	E _{SENS_H_LT}	I _P = I _{PR(max)} , DC	-3.5	-	3.5	%
Coil Path Sensitivity Error Including Lifetime Drift	E _{SENS_C_LT}	I _P = I _{PR(max)} , AC	-3.75	-	3.75	%
Offset Error Including Lifetime Drift	V _{OE_LT}	$I_P = 0 \text{ A}, T_A = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	-	10	mV
Reference Voltage Error Including Lifetime Drift	V _{REF_LT}	$T_A = -40^{\circ}C$ to $150^{\circ}C$	-10	-	10	mV
Quiescent Voltage Error Including Lifetime Drift	V _{QVO_LT}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	-	10	mV

^[1] Typical values are the mean ±3 sigma of production distributions.

DC to 5 MHz Bandwidth, Galvanically Isolated, High-Accuracy Current Sensor IC with Reference Output (ACS37030) or Fault (ACS37032)

ACS37030LLZATR-040B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C, $C_{BYPASS} = 0.1 \,\mu$ F, and $V_{DD} = 3.3 \,$ V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ^[1]	Max.	Units
NOMINAL PERFORMANCE			~	· · · · · ·		
Current Sensing Range	I _{PR}		-40	_	40	A
Sensitivity	Sens	$I_{PR(min)} < I_P < I_{PR(max)}$	_	33	_	mV/A
Quiescent Voltage Output	V _{QVO}	I _P = 0 A	_	1.65	_	V
Reference Voltage Output	V _{REF}		_	1.65	-	V
ERROR COMPONENTS				· · · · · · · · · · · · · · · · · · ·		
Constituity Error	F	$I_{P}=I_{PR(max)}$, $T_{A}=-40^{\circ}$ C to 150°C, DC	-2	±1	2	%
Sensitivity Error	E _{SENS}	$I_{P}=I_{PR(max)}$, $T_{A}=-40^{\circ}$ C to 150°C, 500 kHz	_	±2	-	%
Offset Error	V _{OE}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	±5	10	mV
Reference Voltage Output Error	V _{REF_E}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	±5	10	mV
Quiescent Voltage Output Error	V _{QVO_E}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	±5	10	mV
Power Supply Offset Error	V _{OE_PS}	3.15 to 3.45 V, T _A = 25°C	-5	±3	5	mV
Power Supply Sensitivity Error	E _{SENS_PS}	3.15 to 3.45 V, T _A = 25°C	-1.5	±1	1.5	%
ERROR INCLUDING LIFETIME D	RIFT ^[2]			· · · · · · · · · · · · · · · · · · ·		
Hall Path Sensitivity Error Including Lifetime Drift	E _{SENS_H_LT}	I _P = I _{PR(max)} , DC	-3.5	_	3.5	%
Coil Path Sensitivity Error Including Lifetime Drift	E _{SENS_C_LT}	I _P = I _{PR(max)} , AC	-3.75	_	3.75	%
Offset Error Including Lifetime Drift	V _{OE_LT}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	-	10	mV
Reference Voltage Error Including Lifetime Drift	V _{REF_LT}	$T_A = -40^{\circ}C$ to 150°C	-10	_	10	mV
Quiescent Voltage Error Including Lifetime Drift	V _{QVO_LT}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	_	10	mV

 $^{[1]}$ Typical values are the mean ±3 sigma of production distributions.

DC to 5 MHz Bandwidth, Galvanically Isolated, High-Accuracy Current Sensor IC with Reference Output (ACS37030) or Fault (ACS37032)

ACS37030LLZATR-065B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C. C_{EVEACS} = 0.1 µF, and V_{DD} = 3.3 V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ^[1]	Max.	Units
NOMINAL PERFORMANCE				· · · ·		
Current Sensing Range	I _{PR}		-65	-	65	А
Sensitivity	Sens	$I_{PR(min)} < I_P < I_{PR(max)}$	-	20.3	_	mV/A
Quiescent Voltage Output	V _{QVO}	I _P = 0 A	-	1.65	_	V
Reference Voltage Output	V _{REF}		-	1.65	_	V
ERROR COMPONENTS						
Sensitivity Error	E	I_{P} = 60 A, T_{A} = -40°C to 150°C, DC	-2	±1	2	%
Sensitivity Error	E _{SENS}	$I_{P}=I_{PR(max)}$, $T_{A} = -40^{\circ}$ C to 150°C, 500 kHz	-	±2	_	%
Offset Error	V _{OE}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	±5	10	mV
Reference Voltage Output Error	V _{REF_E}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	±5	10	mV
Quiescent Voltage Output Error	V _{QVO_E}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	±5	10	mV
Power Supply Offset Error	V _{OE_PS}	3.15 to 3.45 V, T _A = 25°C	-5	±3	5	mV
Power Supply Sensitivity Error	E _{SENS_PS}	3.15 to 3.45 V, T _A = 25°C	-1.5	±1	1.5	%
ERROR INCLUDING LIFETIME D	RIFT ^[2]					
Hall Path Sensitivity Error Including Lifetime Drift	E _{SENS_H_LT}	I _P = I _{PR(MAX)} , DC	-3.5	-	3.5	%
Coil Path Sensitivity Error Including Lifetime Drift	E _{SENS_C_LT}	I _P = I _{PR(MAX)} , AC	-3.75	-	3.75	%
Offset Error Including Lifetime Drift	V _{OE_LT}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	_	10	mV
Reference Voltage Error Including Lifetime Drift	V _{REF_LT}	$T_A = -40^{\circ}C$ to 150°C	-10	-	10	mV
Quiescent Voltage Error Including Lifetime Drift	V _{QVO_LT}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	-	10	mV

 $^{[1]}$ Typical values are the mean ± 3 sigma of production distributions.

DC to 5 MHz Bandwidth, Galvanically Isolated, High-Accuracy Current Sensor IC with Reference Output (ACS37030) or Fault (ACS37032)

ACS37032LLZATR-020B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C. C_{EVENCE} = 0.1 µF, and V_{DD} = 3.3 V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ^[1]	Max.	Units
NOMINAL PERFORMANCE	·	·	·	·		·
Current Sensing Range	I _{PR}		-20	_	20	A
Sensitivity	Sens	$I_{PR(min)} < I_P < I_{PR(max)}$	_	66	_	mV/A
Quiescent Voltage Output	V _{QVO}	I _P = 0 A	_	1.65	_	V
Overcurrent Threshold	I _{OC}		_	100	_	%I _{PR}
Overcurrent Hysteresis	I _{OC_HYS}		_	1.2	_	Α
FAULT ERROR						
Overcurrent Error	I _{OC_E}		-2	-	2	A
ERROR COMPONENTS						
Constitution Export		$I_P = I_{PR(max)}$, $T_A = -40^{\circ}C$ to 150°C, DC	-2	±1	2	%
Sensitivity Error	E _{SENS}	$I_{P}=I_{PR(max)}$, $T_{A}=-40^{\circ}C$ to 150°C, 500 kHz	_	±2	_	%
Quiescent Voltage Output Error	V _{QVO_E}	$I_P = 0 A, T_A = -40^{\circ}C \text{ to } 150^{\circ}C$	-10	±5	10	mV
Power Supply Offset Error	V _{OE_PS}	3.15 to 3.45 V, T _A = 25°C	-5	±3	5	mV
Power Supply Sensitivity Error	E _{SENS_PS}	3.15 to 3.45 V, T _A = 25°C	-1.5	±1	1.5	%
ERROR INCLUDING LIFETIME	RIFT ^[2]					
Hall Path Sensitivity Error Including Lifetime Drift	E _{SENS_H_LT}	I _P = I _{PR(MAX)} , DC	-3.5	-	3.5	%
Coil Path Sensitivity Error Including Lifetime Drift	E _{SENS_C_LT}	I _P = I _{PR(MAX)} , AC	-3.75	_	3.75	%
Quiescent Voltage Error Including Lifetime Drift	V _{QVO_LT}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	_	10	mV

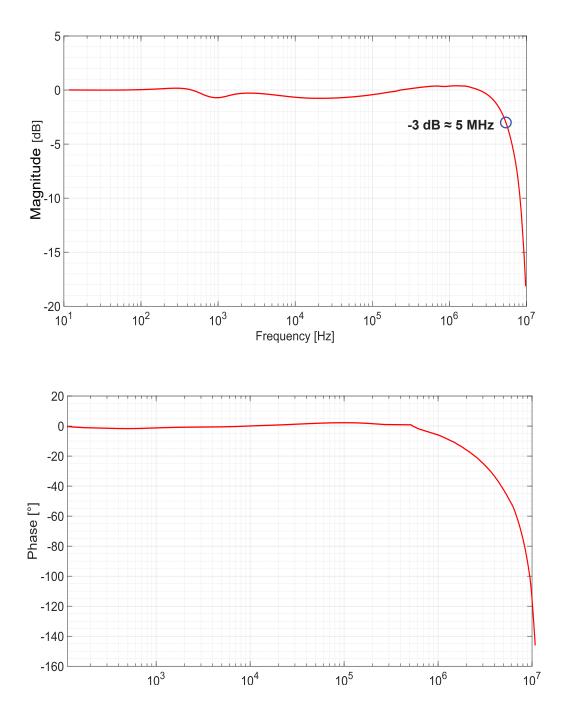
 $\ensuremath{^{[1]}}$ Typical values are the mean ±3 sigma of production distributions.

DC to 5 MHz Bandwidth, Galvanically Isolated, High-Accuracy Current Sensor IC with Reference Output (ACS37030) or Fault (ACS37032)

ACS37032LLZATR-040B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C, $C_{BYPASS} = 0.1 \mu$ F, and $V_{DD} = 3.3$ V, unless otherwise specified

Characteristic	Symbol	Test Conditions	Min.	Typ. ^[1]	Max.	Units
NOMINAL PERFORMANCE			•	· · · · · ·		<u>.</u>
Current Sensing Range	I _{PR}		-40	-	40	A
Sensitivity	Sens	$I_{PR(min)} < I_P < I_{PR(max)}$	-	33	_	mV/A
Quiescent Voltage Output	V _{QVO}	I _P = 0 A	-	1.65	_	V
Overcurrent Threshold	I _{OC}		-	100	_	%I _{PR}
Overcurrent Hysteresis	I _{OC_HYS}		-	2.4	_	A
FAULT ERROR						
Overcurrent Error	I _{OC_E}		-4	-	4	A
ERROR COMPONENTS						
Consitivity Error		$I_{P} = I_{PR(max)}, T_{A} = -40^{\circ}C \text{ to } 150^{\circ}C, DC$	-2	±1	2	%
Sensitivity Error	E _{SENS}	$I_{P}=I_{PR(max)}$, $T_{A}=-40^{\circ}$ C to 150°C, 500 kHz	-	±2	_	%
Quiescent Voltage Output Error	V _{QVO_E}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	±5	10	mV
Power Supply Offset Error	V _{OE_PS}	3.15 to 3.45 V, T _A = 25°C	-5	±3	5	mV
Power Supply Sensitivity Error	E _{SENS_PS}	3.15 to 3.45 V, T _A = 25°C	-1.5	±1	1.5	%
ERROR INCLUDING LIFETIME	DRIFT ^[2]					
Hall Path Sensitivity Error Including Lifetime Drift	E _{SENS_H_LT}	I _P = I _{PR(MAX)} , DC	-3.5	_	3.5	%
Coil Path Sensitivity Error Including Lifetime Drift	E _{SENS_C_LT}	I _P = I _{PR(MAX)} , AC	-3.75	_	3.75	%
Quiescent Voltage Error Including Lifetime Drift	V _{QVO_LT}	I _P = 0 A, T _A = 25°C to 150°C	-10	_	10	mV

 $^{[1]}$ Typical values are the mean ±3 sigma of production distributions.


DC to 5 MHz Bandwidth, Galvanically Isolated, High-Accuracy Current Sensor IC with Reference Output (ACS37030) or Fault (ACS37032)

ACS37032LLZATR-065B3 PERFORMANCE CHARACTERISTICS: Valid through full operating temperature range, $T_A = -40^{\circ}$ C to 150°C, $C_{RVDASS} = 0.1 \ \mu$ F, and $V_{DD} = 3.3 \ V$, unless otherwise specified

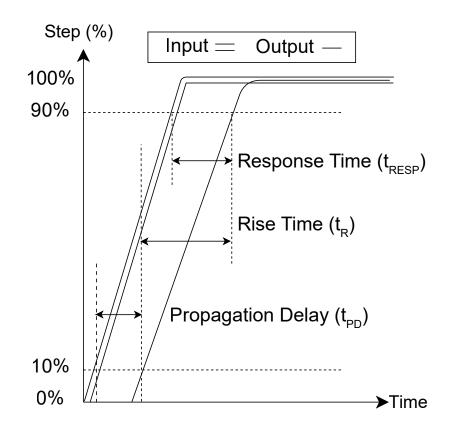
Characteristic	Symbol	Test Conditions	Min.	Typ. ^[1]	Max.	Units
NOMINAL PERFORMANCE		``````````````````````````````````````	^		-	
Current Sensing Range	I _{PR}		-65	-	65	A
Sensitivity	Sens	$I_{PR(min)} < I_P < I_{PR(max)}$	-	20.3	_	mV/A
Quiescent Voltage Output	V _{QVO}	I _P = 0 A	-	1.65	-	V
Overcurrent Threshold	I _{OC}		-	100	-	%I _{PR}
Overcurrent Hysteresis	I _{OC_HYS}		-	3.9	-	A
FAULT ERROR						
Overcurrent Error	I _{OC_E}		-6.5	-	6.5	A
ERROR COMPONENTS						
Consitivity Error		I_{P} = 60 A, T_{A} = -40°C to 150°C, DC	-2	±1	2	%
Sensitivity Error	E _{SENS}	$I_{P} = I_{PR(max)}$, $T_{A} = -40^{\circ}$ C to 150°C, 500 kHz	-	±2	-	%
Quiescent Voltage Output Error	V _{QVO_E}	$I_{P} = 0 \text{ A}, T_{A} = -40^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	±5	10	mV
Power Supply Offset Error	V _{OE_PS}	3.15 to 3.45 V, T _A = 25°C	-5	±3	5	mV
Power Supply Sensitivity Error	E _{SENS_PS}	3.15 to 3.45 V, T _A = 25°C	-1.5	±1	1.5	%
ERROR INCLUDING LIFETIME	DRIFT ^[2]					
Hall Path Sensitivity Error Including Lifetime Drift	E _{SENS_H_LT}	I _P = I _{PR(max)} , DC	-3.5	_	3.5	%
Coil Path Sensitivity Error Including Lifetime Drift	E _{SENS_C_LT}	I _P = I _{PR(max)} , AC	-3.75	-	3.75	%
Quiescent Voltage Error Including Lifetime Drift	V _{QVO_LT}	$I_{P} = 0 \text{ A}, T_{A} = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}$	-10	-	10	mV

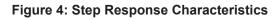
^[1] Typical values are the mean ±3 sigma of production distributions.

ACS37030/2 TYPICAL FREQUENCY RESPONSE

RESPONSE CHARACTERISTICS DEFINITIONS AND PERFORMANCE DATA

Response Time (t_{RESP})


The time interval between a) when the sensed input current reaches 90% of its full-scale value, and b) when the sensor output reaches 90% of its full-scale value.


Propagation Delay (t_{PD})

The time interval between a) when the sensed input current reaches 10% of its full-scale value, and b) when the sensor output reaches 10% of its full-scale value.

Rise Time (t_R)

The time interval between a) when the sensor output reaches 10% of its full-scale value, and b) when the sensor output reaches 90% of its full-scale value.

FUNCTIONAL DESCRIPTION OF POWER ON/OFF OPERATION

Introduction

The voltage of V_{OUT} during a high-impedance state will be most consistent with a known load ($R_{L VOUT}$, $C_{L VOUT}$). Figure 5 and Figure 6 use the same labeling scheme for different power thresholds. References in brackets "[]" are valid for each of these plots.

POWER-ON OPERATION

As V_{DD} ramps up, the V_{OUT} and V_{REF} pins are high-Z until V_{DD} reaches and passes V_{POR} [1]. Once V_{DD} has passed V_{POR} [1], V_{OUT} enters normal operation.

POWER-OFF OPERATION

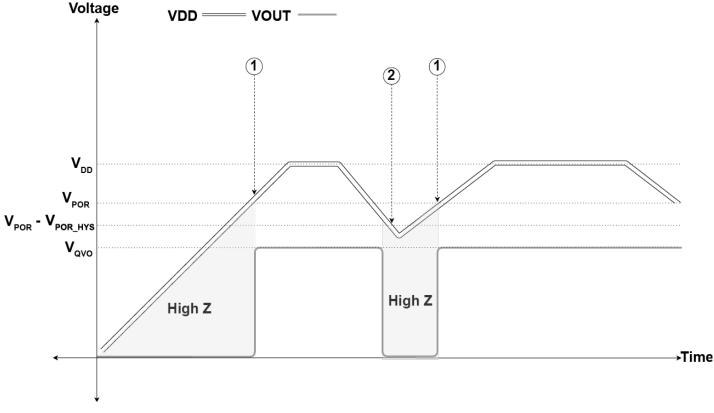
As V_{DD} drops below $V_{POR} - V_{POR_HYS}$ (power-on voltage minus the hysteresis level for the power-on voltage), the outputs will enter a high-Z state. The hysteresis on the power-on voltage prevents noise on the supply line from causing the ACS37030 from entering/exiting POR around the V_{POR} level.

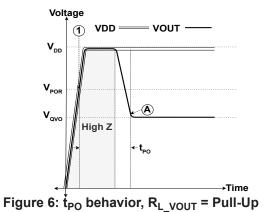
NOTE: Because the device is entering a high-Z state and not driving the output, the time it takes the output to reach a steady state will depend on the external circuitry used.

Voltage Thresholds

POWER-ON RESET RELEASE VOLTAGE (VPOR)

If V_{DD} falls below $V_{POR} - V_{POR_HYS}$ [2] while in operation, the digital circuitry turns off and the output will re-enter a high-Z state. After V_{DD} recovers and exceeds V_{POR} [1], the output will begin reporting again after the delay of t_{PO} .




Figure 5: Power States Thresholds with V_{OUT} Behavior for a 3.3 V Device, R_L = Pull-Down

Timing Thresholds

POWER-ON DELAY (t_{PO})

When the supply is ramped to V_{POR} [1], the device will require a finite time to power its internal components before the outputs are released from high-Z and can respond to an input magnetic field. Power-On Time, t_{PO} , is defined as the time it takes for the output voltage to settle within ±10% of its steady-state value under an applied magnetic field, which can be seen as the time from [1] to [A]. After this delay, the output will quickly approach $V_{OUT(IP)} = Sens \times I_P + V_{REF}$.

DEFINITIONS OF OPERATING AND PERFORMANCE CHARACTERISTICS

Quiescent Voltage Output (V_{QVO})

Quiescent Voltage Output, or V_{QVO} , is defined as the voltage on the output, V_{OUT} , when zero amps are applied through I_P.

Quiescent Voltage Output Error(V_{QVO_E})

Quiescent Voltage Output Error, or V_{QVO_E} , is defined as the error of the VOUT voltage to the V_{QVO} target over all temperatures, with 0 A applied. To improve over temperature performance, the temperature drift is compensated with Allegro factory trim to remain within the limits across temperature.

Reference Voltage Output (V_{REF})

The Reference Voltage Output, or V_{REF} , reports the quiescent voltage output for the output channel, V_{OUT} . The internally generated V_{REF} is used in a pseudo-differential mode to remove errors due to the reference shifts or noise on the ground line. ACS37030 only.

Reference Voltage Output Error (V_{REF_E})

Reference Voltage Output Error, or V_{REF_E} , is defined as the error of the VREF output voltage to the target Reference Voltage Output, V_{REF} . ACS37030 only.

Offset Error (V_{OE})

Offset Error, or V_{OE} , is defined as the difference between V_{QVO} and V_{REF} , V_{OE} includes $V_{QVO_E}-V_{REF}$ drift over temperature. ACS37030 only.

Output Saturation Voltage (V_{SAT_H}/V_{SAT_L})

Output Saturation Voltage, or V_{SAT} , is defined as the voltage that the V_{OUT} does not pass as a result of an increasing magnitude of current. V_{SAT_H} is the highest voltage the output can drive to, while V_{SAT_L} is the lowest. Note that changing the sensitivity does not change the V_{SAT} points.

Sensitivity (Sens)

Sensitivity, or Sens, is the ratio of the output swing versus the applied current through the primary conductor, I_P. This current causes a voltage deviation away from V_{QVO} on the V_{OUT} output until V_{SAT}. The magnitude and direction of the output voltage swing is proportional to the magnitude and direction of the applied current. This proportional relationship between output and input is Sensitivity and is defined as:

$$Sens = \frac{V_{\text{OUT}(\text{IP}_1)} - V_{\text{OUT}(\text{IP}_2)}}{IP_1 - IP_2}$$

where IP_1 and IP_2 are two different currents, and where $V_{OUT(IP1)}$ and $V_{OUT(IP2)}$ are the voltages of the device at those applied currents.

Sensitivity Error (E_{SENS})

Sensitivity Error, or E_{SENS} , is the error of Sensitivity from the sensitivity target including drift over temperature. Sensitivity error is compensated with Allegro factory trim.

Error Components Including Lifetime Drift (E_{SENS_LTD}/V_{QVO_LTD}/V_{REF_LTD}/V_{OE_LTD})

Lifetime drift characteristics are based on a statistical combination of production distributions and worst-case distribution of parametric drift of individuals observed during AEC-Q100 qualification. Solder reflow induces stress on the ACS37030/32 device causing parametric shifts, and lifetime drift limits apply immediately after solder reflow as well as long term use.

Power Supply Sensitivity Error (E_{SENS_PS})

Power Supply Sensitivity Error, or E_{SENS_PS} , is defined as the difference in E_{SENS} measurements when V_{DD} is at the nominal value and V_{DD} is ±5%. For a 3.3 V device, this is 3.15 V to 3.45 V.

Power Supply Offset Error (VOE PS)

Power Supply Offset Error, or V_{OE_PS}, is defined as the difference in V_{OE} measurements when V_{DD} is at the nominal value and and V_{DD} is ±5%. For a 3.3 V device, this is 3.15 V to 3.45 V.

ACS37030 and
ACS37032DC to 5 MHz Bandwidth, Galvanically Isolated, High-Accuracy
Current Sensor IC with Reference Output (ACS37030) or Fault (ACS37032)

OVERCURRENT FAULT (OCF) BEHAVIOR

The overcurrent fault (OCF) function (ACS37032 only) pulls the open-drain FAULT pin low when the applied current exceeds a preset threshold (I_{OCR}). On the ACS37032, this threshold is internally set to 100% of the full-scale rated current. This flag trips symmetrically for positive and negative applied currents.

The implementation for the OCF circuitry is accurate over temperature and does not require further temperature compensation.

OVERCURRENT ERROR (IOC_E)

Overcurrent Error, or $I_{OC_E}\text{,}$ is the error between the ideal I_{OC} and the measured $I_{OC.}$

OVERCURRENT HYSTERESIS (I_{OC_HYS})

Overcurrent Hysteresis, or I_{OC_HYST} , is defined as the magnitude of current in percentage of the FS that must drop before a fault assertion will be cleared. This can be seen as the separation between the voltages [9] to [10] in Figure 7.

OVERCURRENT FAULT RESPONSE TIME (toc_RESP)

Overcurrent Response Time, or t_{OC_RESP} , is defined as the time from when the input reaches the operating point [9] until the OCF pin falls below $V_{FAULT\ L}$ [G].

OVERCURRENT FAULT HOLD TIME (t_{OC_HLD})

Overcurrent Hold Time, or t_{OC_HLD} , is defined as the minimum time the OCF flag will be asserted after an OCF event. After the hold time has been reached, the OCF will release if the OCF condition has ended ([G] until [J] in Figure 8) or persist if the OCF condition is still present. Factory default is 0.1 ms.

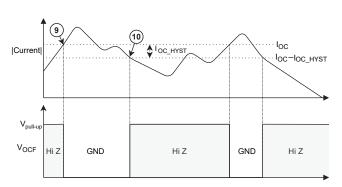


Figure 7: Fault Thresholds and OCF Pin Functionality

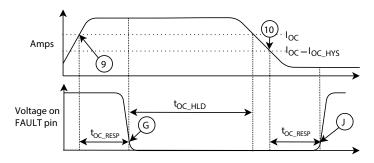


Figure 8: Fault Hold with Clear Fault After Hold Time

ACS37030 and
ACS37032DC to 5 MHz Bandwidth, Galvanically Isolated, High-Accuracy
Current Sensor IC with Reference Output (ACS37030) or Fault (ACS37032)

THERMAL PERFORMANCE

Thermal Rise vs. Primary Current

Self-heating due to the flow of current in the package IP conductor should be considered during the design of any current sensing system. The sensor, printed circuit board (PCB), and contacts to the PCB will generate heat and act as a heat sink as current moves through the system. No external pull-up resistor is required, as the ACS37032 has an internal 10 k Ω pull-up resistor. The Fault output can be routed directly to a digital IO pin on the system microcontroller.

The thermal response is highly dependent on PCB layout, copper thickness, cooling techniques, and the profile of the injected current. The current profile includes peak current value, current on-time, and duty cycle.

Placing vias under the copper pads of the Allegro current sensor evaluation board minimizes the current path resistance and improves heatsinking to the PCB, while vias outside of the pads limit the current path to the top of the PCB trace and have worse heatsinking under the part (see Figure 9 and Figure 10).

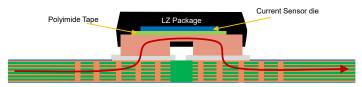
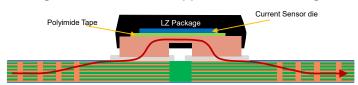
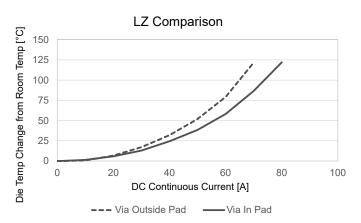




Figure 9: Vias Under Copper Pads, LZ Package

Figure 10: No Vias Under Copper Pads, LZ Package

The plot in Figure 11 shows the measured rise in steady-state die temperature of the ACS37030/2 versus DC continuous current at an ambient temperature, T_A , of 25°C for two board designs: filled vias under copper pads and no vias under copper pads. Note the thermal offset curves may be directly applied to other values of T_A . Using in-pad vias has better thermal performance than no in-pad vias.

Figure 11: LZ Package Comparison with and without In-Pad Vias

The thermal capacity of the ACS37030/2 should be verified by the end user in the application's specific conditions. The maximum junction temperature, $T_{J(max)}$ (165°C), should not be exceeded. Measuring the temperature of the top of the package is a close approximation of the die temperature.

Evaluation Board Layout

Thermal data shown in Figure 11 was collected using the LC/LZ Current Sensor Evaluation Board (TED-0004110). This board includes six layers. The evaluation board is shown in Figure 12.

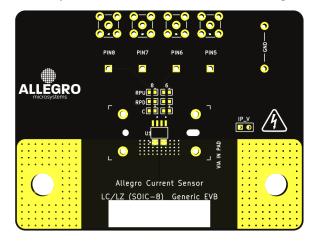
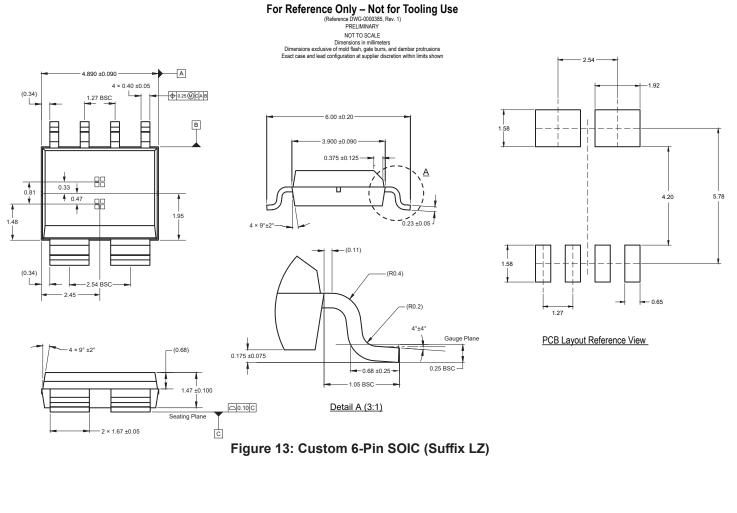



Figure 12: LZ Package Allegro Evaluation Board

Gerber files for the evaluation board used are available for download from the Allegro website. See the technical documents section of the ACS37030/2 webpage.

PACKAGE OUTLINE DRAWING

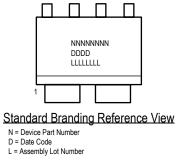


Figure 14: LZ Package Branding

Revision History

Number	Date	Description
-	November 29, 2023	Initial release

Copyright 2023, Allegro MicroSystems.

Allegro MicroSystems reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro's products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro's product can reasonably be expected to cause bodily harm.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

Copies of this document are considered uncontrolled documents.

For the latest version of this document, visit our website:

www.allegromicro.com

