

General description

EZ-PD™ CMG2 is a dedicated USB Type-C EMCA controller that complies with the USB Type-C and Power Delivery (PD) standards for electronically marked Type-C thunderbolt and non-thunderbolt passive cable applications. EZ-PD™ CMG2 integrates a complete Type-C transceiver including the R_A termination resistors on the VCONN pins and VBUS short circuit protection on both VCONN and CC pins. EZ-PD™ CMG2 also includes 47 bytes of storage for configuration of vendor, device, and cable specific configuration data. EZ-PD™ CMG2 is targeted for passive EMCA implementations with either one or two e-marker chips on the cable.

Features

Type-C support and USB-PD support

- Supports USB Power Delivery specification revision 3.1, v1.4 and USB Type-C Specification revision 2.1 (including support for the revised minimum VCONN operating voltage of 3 V)
- Supports USB4, TBT4 and extended power range (EPR) PD protocol
- Integrated high-voltage protection on CC, VCONN1, and VCONN2 pins to protect against accidental shorts to the VBUS pin on the Type-C connector up to 54 V
- 47-byte storage programmable over Type-C interface for storing vendor, device, and cable specific configuration data
- Termination resistor R_A on VCONN1 and VCONN2
- Supports R_A weakening to reduce power consumption
- Supports electronically marked passive cable implementations with one or two controllers
- Supports up to 240W (48V/5A) of power

· Clocks and oscillators

• Integrated oscillator eliminating the need for external clock

Power

- 2.7 V to 5.5 V operation
- Sleep: 1.7 mA typical

System-level electrostatic discharge (ESD) protection

- On CC, VCONN1, and VCONN2 pins
- ±8 kV contact discharge and ±15 kV air gap discharge based on IEC61000-4-2 level 4C

Package

- 9-ball WLCSP
- Supports industrial temperature range (-40°C to +85°C)

Logic block diagram

Logic block diagram

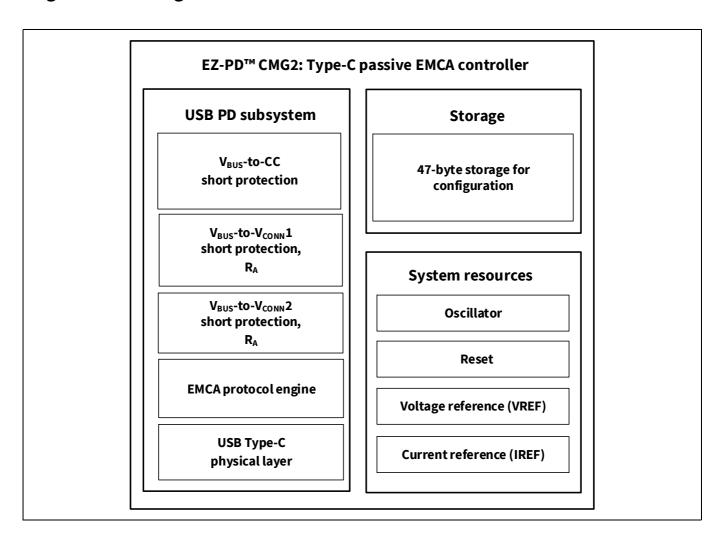


Table of contents

Table of contents

General description	1
Features	
Logic block diagram	
Table of contents	
1 Pinout	
2 Power	
3 EZ-PD™ CMG2 application configuration update over CC interface	
4 Application diagrams	
5 Electrical specifications	
5.1 Absolute maximum ratings	
5.2 Device-level specifications	
6 Ordering information	
6.1 Ordering code definition	
7 Packaging	
7.1 Package diagram	
8 Acronyms	
9 Document conventions	
9.1 Units of measure	
Revision history	

3

Pinout

1 Pinout

Table 1 9-ball CSP pin description

9-ball CSP	Pin name	Description
A1	CC	Communication channel (VBUS short protected)/IEC
A2	VCONN2	VCONN2 supply with R _A termination (2.7 V to 5.5 V) (VBUS short protected)/IEC
A3	DNU	Do not use
B1	VCONN1	VCONN1 supply with R _A termination (2.7 V to 5.5 V) (VBUS short protected)/IEC
B2	VSS	Ground pin. Mandatory to connect to system GND.
B3	DNU	Do not use
C1	VCCD	1.8-V core voltage out. Connect to 1-μF capacitor.
C2	DNU	Do not use
C3		Do not use

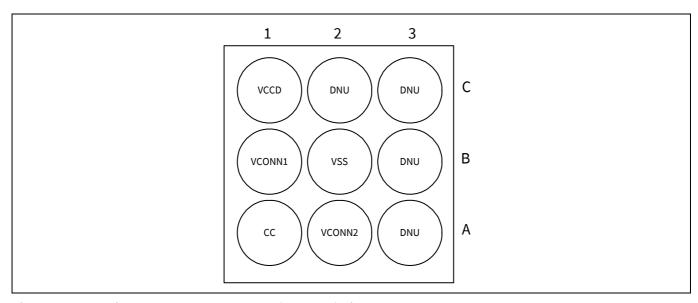


Figure 1 Pinout of 9-WLCSP bottom (balls up) view

Power

2 Power

Figure 2 shows an overview of the EZ-PD™ CMG2 power system requirement. EZ-PD™ CMG2 operates from two possible external supply sources, VCONN1 and VCONN2. The VCONN supplies support operation over 2.7 V–5.5 V. EZ-PD™ CMG2 has two different power modes: Active and Sleep, transitions between which are managed by the Power System. The VCCD pin, the output of the core regulator (1.8 V), is brought out for connecting a 1-µF capacitor for regulator stability only. This pin is not supported as a power supply.

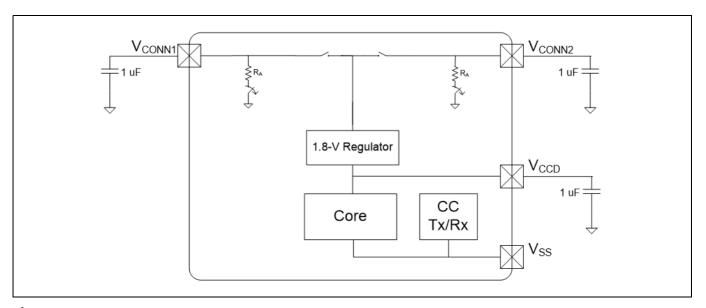


Figure 2 Power system

EZ-PD™ CMG2 application configuration update over CC interface

3 EZ-PD™ CMG2 application configuration update over CC interface

The EZ-PD™ CMG2 manufacturing test kit (MTK) utility is used for updating the configuration parameters of the EZ-PD™ CMG2 devices over the CC interface. The EZ-PD™ CMG2 MTK utility is integrated as a part of the EZ-PD™ configuration utility and is supported from v1.4.0. Vendor-specific and cable-specific parameters can be set using the EZ-PD™ configuration utility. Once the parameters are set, the EZ-PD™ CMG2 MTK utility is used for configuration and testing of EZ-PD™ CMG2-based passive EMCA cables.

To use the EZ-PD™ CMG2 MTK utility, you must use the CY4532 EZ-PD™ CCG3PA EVK as shown in a high-level block diagram in **Figure 3**. The EZ-PD™ CMG2 MTK utility is accompanied with a EZ-PD™ CMG2 MTK-specific firmware solution, which is intended for the CCG4 device present on the CY4532 EZ-PD™ CCG3PA EVK's power board. If customers are using the CY4532 EZ-PD™ CCG3PA EVK for the first time to update the configuration parameters of EZ-PD™ CMG2 devices, then the CCG4 device's firmware needs to be updated to this MTK-specific firmware.

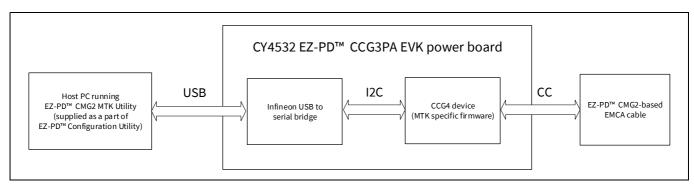


Figure 3 CMG2 application configuration update over CC interface

Application diagrams

4 Application diagrams

Figure 4 shows the application using a single CMG2 device per cable present at one of the two plugs, whereas Figure 5 shows the same with two CMG2 devices per cable present at each plug. The VBUS signal, the Super-Speed lines, Hi-Speed lines, and CC lines are connected directly from one end to another. The application diagram shown in Figure 4 requires a single VCONN wire to run through the cable so that the CMG2 device can be powered irrespective of which plug is connected to the host (DFP). However, in the application diagram shown in Figure 5, the VCONN signal does not run through the entire cable, but only runs to the respective VCONN pin of the CMG2 device at each end of the plug. Also, only one EZ-PD™ CMG2 device is powered at any given instance, depending on which one is nearer to the DFP that supplies VCONN.

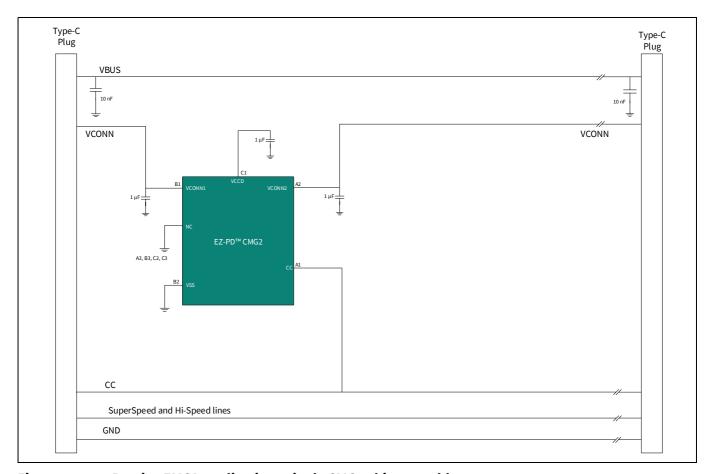


Figure 4 Passive EMCA application - single CMG2 chip per cable

Electrical specifications

Electrical specifications 5

Absolute maximum ratings 5.1

Table 2 **Absolute maximum ratings**

Parameter	Description	Min	Тур	Max	Unit	Details/conditions
V _{CONN_SHORT_MAX}	Max V _{BUS} short voltage tolerance			54		Absolute max
V _{CC_PIN_ABS}	Max V _{BUS} short voltage on the CC pin	_		34		Absolute max
ESD_HBM	Electrostatic discharge human body model (ESD-HBM)	2200			V	
ESD_CDM	Electrostatic discharge charged device model (ESD-CDM)	500	_	_		-
LU	Pin current for latch-up	-100		100	mA	
ESD_IEC_CON	Electrostatic discharge	8000				VCONN1, VCONN2, and CC
ESD_IEC_AIR	IEC61000-4-2	15000		_	V	pins tolerant for IEC test a system/connector level

Device-level specifications 5.2

See basic specifications in the following tables. More specifications will be added in a future version of this document.

Tahle 3 DC specifications

Table 3	Table 3 DC specifications						
Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/conditions
SID.PWR#1	V _{CONN1} or V _{CONN2}	Power supply input voltage	2.7	-	5.5	V	-
SID.PWR#5	V _{CCD}	Output voltage (for core logic)	-	1.8	_		
SID.PWR#12	C _{EFC}	External regulator voltage bypass on V _{CCD}			1.2		
SID.PWR#13	C _{VCONN}	Power supply decoupling capacitor on V _{CONN1} and V _{CONN2}	0.8 1		_	μF	X5R ceramic or better
Active mode	, V _{CONN1} or V	_{CONN2} = 2.7 V to 5.5 V. Typical v	alues i	measu	red at \	CONN1	or V _{CONN2} = 5 V
SID.PWR#8	I _{DD_A}	Active current	_	5	7.5	mA	CC I/O in Transmit (Tx) or Receive (Rx). CPU at 18 MHz.
Sleep mode,	Sleep mode, typical values measured at V _{CONN1} or V _{CONN2} = 5 V and T _A = 25°C						
SID25A	I _{DD_S}	Sleep mode current	-	1.7	3.0	mA	CC as wakeup source. One VCONN supply is powered, the other is floating or grounded.

Electrical specifications

Table 4 PD DC specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/conditions
SID.PD.6	R _A	Power cable termination	0.8	1	1.2	kΩ	All supplies force to 0 V and 0.2 V applied at V _{CONN1} or V _{CONN2}
SID.PD.7	R _{A_OFF}	Power cable termination – disabled	0.2	0.7		МΩ	2.7 V applied at V _{CONN1} or V _{CONN2} with R _A disabled
SID.PD.14	I _{LEAK}	Leaker on V _{CONN1} or V _{CONN2} for discharge upon cable detach	150		_	μΑ	-
SID.PD.15	V _{GNDOFST}	Ground offset tolerated by bi-phase mark code (BMC) receiver	-500	_	500	mV	Relative to remote BMC transmitter
SID.PD.16	Z _{OPEN_PD}	Impedance of CC pin with VCONN1 and VCONN2 unpowered	200		_	kΩ	0 V ≤ CC voltage ≤ 5.5 V

Table 5Storage specifications

Spec ID	Parameter	Description	Min	Тур	Max	Unit	Details/conditions
SID.MEM#3	NVL_ERASE	NVL bulk erase time	25		100	mc	-40°C ≤ T _A ≤ 85°C
SID.MEM#4	NVL_WRITE	NVL program	2		10	ms	-40 C \(1 A \(\) 63 C
SID.MEM#5	MVI DD	NVL data retention	20	_		voors	$25^{\circ}\text{C} \le \text{T}_{\text{A}} \le 55^{\circ}\text{C}$
SID.MEM#5A	NVL_DR	INVL data retention	10		_	years	55°C ≤ T _A ≤ 85°C
SID.MEM#6	NVL_ENPB	NVL write endurance	100			cycles	$25^{\circ}\text{C} \le \text{T}_{\text{A}} \le 55^{\circ}\text{C}$

(infineon

Ordering information

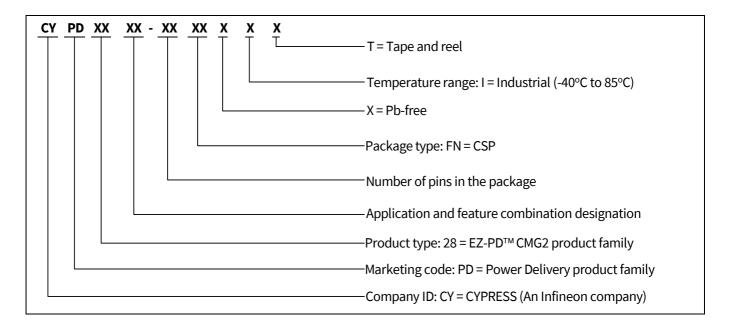

6 Ordering information

Table 6 lists the EZ-PD™ CMG2 part numbers and features.

Table 6 EZ-PD™ CMG2 ordering information

MPN	Application	Type-C ports	Role	Package type	Si ID
CYPD2803A1-09FNXIT	Passive cable	1	EMCA	9-ball CSP	0x3C00

6.1 Ordering code definition

(infineon

Packaging

7 Packaging

Table 7 Package characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
T _A	Operating ambient temperature	Industrial	-40	_	85	°C
T _J	Operating junction temperature	iliuustilat	-45	_	100	C
T_JA	Package θ _{JA} (9-pin CSP)	_		51.2	_	°C/W
T _{JC}	Package θ_{JC} (9-pin CSP)	_	_	1.38	_	C/ VV

Table 8 Solder reflow peak temperature

Package	Maximum peak temperature	Maximum time within 5°C of peak temperature
9-pin CSP	260°C	30 seconds

Table 9 Package moisture sensitivity level (MSL), IPC/JEDEC J-STD-2

Package	MSL
9-pin CSP	MSL 1

Packaging

7.1 Package diagram

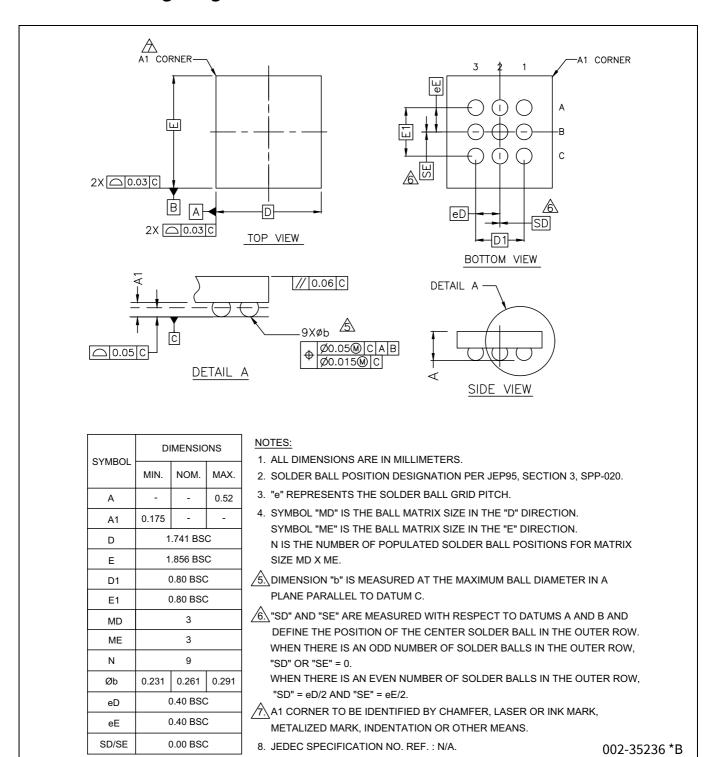


Figure 6 9ball WLCSP 1.741 × 1.856 × 0.520 mm FN09B

Acronyms

Acronyms 8

Acronyms used in this document Table 10

Acronym	Description
ВМС	bi-phase mark code
CC	configuration channel
CPU	central processing unit
DFP	downstream facing port
EMCA	electronically marked cable assembly, a USB cable that includes an IC that reports cable characteristics (e.g., current rating) to the Type-C ports
EPR	extended power range
ESD	electrostatic discharge
НВМ	human body model
IEC	International Electrotechnical Commission
IC	integrated circuit
MCU	microcontroller unit
MTK	manufacturing test kit
NC	no connect
NVL	non-volatile latch
PD	power delivery
PHY	physical layer
POR	power-on reset
PSoC™	Programmable System-on-Chip™
RX	receive
TX	transmit
Type-C	a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 240W of power
USB	Universal Serial Bus

Document conventions

9 Document conventions

9.1 Units of measure

Table 11 Units of measure

Symbol	Unit of measure
°C	degrees celsius
Hz	hertz
kΩ	kilo ohm
MHz	megahertz
$M\Omega$	mega-ohm
μΑ	microampere
μF	microfarad
μs	microsecond
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
Ω	ohm
pF	picofarad
S	second
V	volt

infineon

Revision history

Revision history

Document revision	Date	Description of changes
*B	2023-05-05	Release to web.
*C	2023-08-04	Removed part number from Figure 4 and Figure 5.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-08-04 **Published by**

Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email:

erratum@infineon.com

Document reference 002-36202 Rev. *C

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.