eGaN® FET DATASHEET

EPC7014 – Rad Hard Power Transistor V_{DS} , 60 V $R_{DS(on)}$, 340 m Ω I_{D} , 4 A pulse

95% Pb / 5% Sn solder

P S

RoHS 🗭 🖗

EFFICIENT POWER CONVERSION

Halogen-Free

Rad Hard eGaN® transistors have been specifically designed for critical applications in the high reliability or commercial satellite space environments. GaN transistors offer superior reliability performance in a space environment because there are no minority carriers for single event, and as a wide band semiconductor there is less displacement for protons and neutrons, and additionally there is no oxide to breakdown.

These devices have exceptionally high electron mobility and a low temperature coefficient resulting in very low $R_{DS(on)}$ values. The lateral structure of the die provides for very low gate charge (Q_G) and extremely fast switching times. These features enable faster power supply switching frequencies resulting in higher power densities, higher efficiencies and more compact designs.

	Maximum Ratings					
	PARAMETER	VALUE	UNIT			
M	Drain-to-Source Voltage (Continuous)	60	V			
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	72	v			
	Continuous ($T_A = 25^{\circ}C$)	2.4	۸			
Ι _D	Pulsed (25°C, T_{PULSE} = 300 µs)	4	A			
V _{GS}	Gate-to-Source Voltage	7	V			
	Gate-to-Source Voltage	-4	v			
Τj	Operating Temperature	-55 to 150	- °C			
T _{STG}	Storage Temperature	-55 to 150	Ľ			

Thermal Characteristics					
	PARAMETER				
R _{θJC}	Thermal Resistance, Junction-to-Case	7.1			
R _{θJB}	Thermal Resistance, Junction-to-Board	25	°C/W		
R _{θJA}	Thermal Resistance, Junction-to-Ambient (Note 1)	104			

Note 1: R_{0JA} is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

Applications	

Commercial satellite EPS & avionics

Die size: 0.9 mm x 0.9 mm

- Deep space probes
- High frequency Rad Hard DC-DC conversion

EPC7014 eGaN[®] FETs are supplied only in passivated die form with solder bumps.

Rad Hard motor drives

Features

- Ultra high efficiency
- Ultra low Q_G
- Ultra small footprint
- Light weight
- Total dose
- Rated > 1 Mrad
- Single event
 - SEE immunity for LET of 85 MeV/(mg/cm²) with V_{DS} up to 100% of rated breakdown

Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
BV _{DSS}	Drain-to-Source Voltage	$V_{GS} = 0 V, I_D = 0.1 mA$	60			V
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 V, V_{DS} = 60 V$		0.0001	0.1	mA
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		0.001	0.5	
I _{GSS}	Gate-to-Source Forward Leakage [#]	$V_{GS} = 5 V, T_J = 125 °C$		0.05	1	mA
	Gate-to-Source Reverse Leakage [#]	$V_{GS} = -3 V$		0.05	1.1	
V _{GS(TH)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 0.14 \text{ mA}$	0.8	1.6	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V}, I_D = 0.50 \text{ A}$		240	340	mΩ
V _{SD}	Source-Drain Forward Voltage	$I_{S} = 0.1 \text{ A}, V_{GS} = 0 \text{ V}$		1.9		V

Defined by design. Not subject to production test.

EPC – POWER CONVERSION TECHNOLOGY LEADER | EPC-CO.COM | ©2021

1

EPC7014

Dynamic Characteristics (T _J = 25°C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
C _{ISS}	Input Capacitance [#]	$V_{DS} = 30 V, V_{GS} = 0 V$		16	22	pF
C _{RSS}	Reverse Transfer @apacitance			0.1		
C _{OSS}	Output Capacitance [#]			17	26	
C _{OSS(ER)}	Effective Output Capacitance, Energy Related (Note 2)	$V_{DS} = 0$ to 30 V, $V_{GS} = 0$ V		21		
C _{OSS(TR)}	Effective Output Capacitance, Time Related (Note 3)			26		
R _G	Gate Resistance			12.6		Ω
Q _G	Total Gate Charge	$V_{DS} = 30 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 0.5 \text{ A}$		142	184	
Q _{GS}	Gate-to-Source Charge	$V_{DS} = 30 \text{ V}, \text{ I}_{D} = 0.5 \text{ A}$		43		
Q _{GD}	Gate-to-Drain Charge			25		c
Q _{G(TH)}	Gate Charge at Threshold			35		pC
Q _{OSS}	Output Charge [#]	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$		764	1146	
Q _{RR}	Source-Drain Recovery Charge			0		

Defined by design. Not subject to production test.

Note 2: C_{OSS(ER)} is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Note 3: C_{OSS(TR)} is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Figure 2: Transfer Characteristics

Figure 11: Safe Operating Area

Figure 12: Transient Thermal Response Curves

EPC7014

DIE MARKINGS

EPC7014

described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN[®] is a registered trademark of Efficient Power Conversion Corporation. EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx Information subject to change without notice. Revised May, 2021