

Datasheet

High bandwidth (22 MHz) low offset (200 µV) 5 V op amp

TSV7723 MiniSO10

TSV7722 SO8

Features

- · Gain bandwidth product 22 MHz, unity gain stable
- High accuracy input offset voltage: 50 μV typ., 200 μV max.
- · Low input bias current: 2 pA typ.
- Low input voltage noise density: 7 nV/√Hz
- Wide supply voltage range: 1.8 V to 5.5 V
- Output rail-to-rail
- Input common-mode range includes low rail
- Automotive grade and shutdown versions available
- Benefits:
 - High frequency signal conditioning
 - Optimized accuracy for low-side current sensing

Applications

- Low-side current measurement
- · Photodiode amplifiers
- Automotive current measurement and sensor signal conditioning
- · Strain gauges signal conditioning

Description

The TSV7721, TSV7722 and TSV7723 are single and dual 22 MHz-bandwidth unity-gain-stable amplifiers. The input offset voltage of 200 μ V max. (50 μ V typ.) at room temperature, optimized for common-mode close to ground makes the TSV772x ideal for low-side current measurements.

The TSV772x can operate from 1.8 V to 5.5 V single supply and it is fully specified on a load of 47 pF, therefore allowing easy usage as A/D converters input buffer.

The TSV772x series offers rail-to-rail output, excellent speed/power consumption ratio, and 22 MHz gain bandwidth product, while consuming just 1.7 mA at 5 V.

The devices also feature an ultra-low input bias current that enables connection to photodiodes and other sensors where current is the key value to be measured.

These features make the TSV772x series ideal for high-accuracy, high-bandwidth sensor interfaces.

Maturity status link	Channel	Automotive	Package
TSV7721	1		SOT23-5
137//21	1	•	SOT23-5
	2		DFN8
	2		MiniSO8
TSV7722	2		SO8
	2	•	MiniSO8
	2	•	SO8
TSV7723	2		MiniSO10

Related products							
TSV792	Rail-to-rail amplifier with higher GBW 50 MHz						
TSV7192	20 MHz amplifier with 36 V supply voltage						

1 Pin connections

1.

Figure 1. TSV7721 single operational amplifier

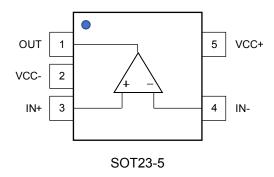
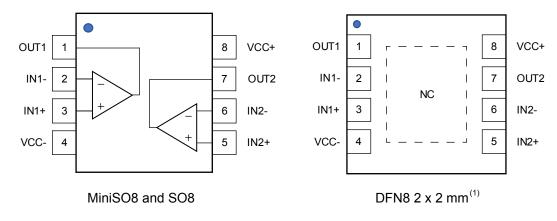
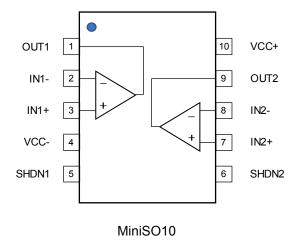




Figure 2. TSV7722 dual operational amplifier

The exposed pad of the DFN8 2x2 can be connected to VCC- or left floating.

Figure 3. TSV7723 dual operational amplifier with shutdown option

DS13614 - Rev 1 page 2/33

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage (referred to VCC- pin) (1)	-0.3 to 6.0	V
V _{id}	Differential input voltage (2)	± VCC	V
V _{IN}	Input pins input voltage (3)	V _{CC} 0.3 V to V _{CC+} + 0.3 V	V
I _{IN}	Input pins input current (4)	± 10	mA
T _{stg}	Storage temperature	-65 to 150	°C
	Thermal resistance junction-to-ambient (5)		
	SOT23-5	250	°C / W
R _{th-ja}	DFN8 (2 mm x 2 mm)	76	
rtn-ja	MiniSO8	127	C / VV
	MiniSO10	113	1
	SO8	113	
Tj	Maximum junction temperature	150	°C
ESD	HBM: human body model (6)	4	kV
ESD	CDM: charged device model (7)	1.5	kV

- 1. All voltage values, except differential voltage, are with respect to VCC- pin.
- 2. The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.
- 3. Vcc Vin must not exceed 6 V, Vin must not exceed 6 V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Rth are typical values.
- 6. Human body model: the test HBM is done in accordance with the standards ESDA-JS-001-2017 and Q100-002
- 7. Charged device model: the test CDM is done in accordance with the standards ESDA-JS-002-2018 and Q100-011

Table 2. Operating conditions

Symbol	Parameter	Min.	Max.	Value
V _{CC}	Supply voltage	1.8	5.5	V
V _{icm}	Common-mode input voltage range	V _{CC-} – 0.1	V _{CC+} – 1.1	V
T _{oper}	Operating free air temperature range	-40	125	°C

DS13614 - Rev 1 page 3/33

3 Electrical characteristics

Table 3. Electrical characteristics at V_{CC+} = 5 V, with V_{CC-} = 0 V, V_{icm} = V_{CC} / 2, T = 25°C, and OUT pin connected to V_{CC} / 2 through R_L = 10 k Ω (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC Performance				
V _{io}	Input offset voltage (V _{icm} = 0 V)	T = 25°C		±50	±250	μV
V IO	input onset voltage (V _{ICM} = 0 V)	-40°C < T < 125°C			±650	μν
$\Delta V_{io}/\Delta T$	Input offset voltage drift (V _{icm} = 0 V)	-40°C < T < 125°C			±4	μV/°C
I	Input bias current (V _{OUT} = V _{CC} /2)	T = 25°C		2		π Λ
l _{ib}	input bias current (VOU) = VCC/2)	-40°C < T < 125°C		75		pA
ı.	Input offset current (V _{OUT} = V _{CC} /2)	T = 25°C		1		nΛ
l _{io}	input onset current (VOUT = VCC/2)	-40°C < T < 125°C		20		pA
	Common-mode rejection ratio	T = 25°C	76	99		
CMR1	$20.log(\Delta V_{icm}/\Delta V_{io}),\ V_{icm} = 0\ V\ to$ $V_{CC^-}\ 1.1\ V,\ R_L > 1\ M\Omega$	-40°C < T < 125°C	74			dB
	Common-mode rejection ratio	T = 25°C	75			
CMR2	$20.log(\Delta V_{icm}/\Delta Vio),$ $V_{icm} = -0.1 \ V \ to \ V_{CC^-} \ 1.1 \ V, \ R_L > 1 \ M\Omega$	-40°C < T < 125°C	60			dB
	Supply voltage rejection ratio	T = 25°C	85	108		
SVR	$20.log(\Delta V_{CC}/\Delta V_{io}),~V_{CC}$ = 1.8 V to 5.5 V, V_{icm} = 0 V, R _L > 1 M Ω	-40°C < T < 125°C	80			dB
^	Large signal voltage gain V _{OUT} = 0.3 V to	T = 25°C	111	130		15
A_{VD}	(V _{CC-} 0.3 V)	-40°C < T < 125°C	106			dB
\/	High level output voltage	T = 25°C			15	
V_{OH}	$(V_{OH} = V_{CC} - V_{OUT})$	-40°C < T < 125°C			25	
V-:	Low level output veltage	T = 25°C			15	mV
V_{OL}	Low level output voltage	-40°C < T < 125°C			25	
	I _{sink} (V _{OUT} = V _{CC})	T = 25°C	50	70		
l _{OUT}	ISINK (VOUT – VCC)	-40°C < T < 125°C	45			mA
1001	I _{source} (V _{OUT} = 0 V)	T = 25°C	45	65		
	Isource (VOUT 0 V)	-40°C < T < 125°C	40			
I _{CC}	Supply current (per channel, $V_{OUT} = V_{CC}/2$,	T = 25°C		1.7	2.2	mA
100	$R_L > 1 M\Omega$)	-40°C < T < 125°C			2.5	IIIA
		AC Performance				
GBW	Gain bandwidth product	C _L = 47 pF	15	22		MHz
F _u	Unity gain frequency	Ο _L - 47 βι		19.5		IVIITZ
Фт	Phase margin			44		degrees
G _m	Gain margin			8		dB
SR	Slew rate (1)		8	11		V/µs

DS13614 - Rev 1 page 4/33

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{rec}	Overload recovery time: trec is defined as delay between input voltage edge and V _{OUT} reaching 100 mV from initial value	tween input voltage edge and V _{OUT}		70		ns
t _s	Settling time	To 0.1%, V _{in} = 1 V _{p-p}		270		ns
e _n	Equivalent input noise voltage	f = 1 kHz		13		nV/√Hz
e _n	Equivalent input noise voltage	f = 10 kHz		7		IIV/VIIZ
C _S	Channel separation (for TSV7722 and TSV7723)	f = 1 kHz		120		dB
C _{in}	land annotation of	Differential		6		
Cin	Input capacitance Common-mode			4.5		pF
	SHDN characteristi	cs (TSV7723 only, SHDN active	low)			·
	Supply current per channel in shutdown mode $V_{OUT} = V_{CC} / 2$, $R_L > 1 M\Omega$, S_{HDN}	T = 25°C		2.5	50	nA
I _{CC}		-40°C < T < 85°C			450	TIA .
	= V _{CC} -	-40°C < T < 125°C			4	μΑ
t _{on}	Amplifier turn-on time (other channel already on)	V _{OUT} = V _{CC} - to V _{CC} - + 0.2 V		2		μs
t _{init}	Initialization time (both channels off)	V _{OUT} to 200 mV of final value		7		μs
V _{IH}	SHDN logic high		2			
V _{IL}	SHDN logic low				0.8	V
I _{IH}	SHDN current high	SHDN = V _{CC+}		TBD		
I _{IL}	SHDN current low SHDN = V _{CC} -			TBD		рA
	Output leakage in shutdown mode,	T = 25°C		TBD		рА
l _{Oleak}	SHDN = V _{CC} -	-40°C < T < 125°C		TBD		nA

^{1.} Slew rate value is calculated as the average between positive and negative slew rates.

DS13614 - Rev 1 page 5/33

Table 4. Electrical characteristics at V_{CC+} = 3.3 V, with V_{CC-} = 0 V, V_{icm} = V_{CC} / 2, T = 25°C, and OUT pin connected to V_{CC} / 2 through R_L = 10 k Ω (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC Performance			•	
V	Innuit offect veltors ()/ = 0.10	T = 25°C		±50	±200	
V_{io}	Input offset voltage (V _{icm} = 0 V)	-40°C < T < 125°C			±600	μV
ΔV _{io} /ΔT	Input offset voltage drift (V _{icm} = 0 V)	-40°C < T < 125°C		±4		μV/°C
	Input bigg gurrent ()/ =)/ (2)	T = 25°C		1.8		^
I _{ib}	Input bias current (V _{OUT} = V _{CC} /2)	-40°C < T < 125°C		60		pA
ı.	Input offset current (V _{OUT} = V _{CC} /2)	T = 25°C		1		50
l _{io}	input onset current (VOOT = VCC/2)	-40°C < T < 125°C		20		pA
	Common-mode rejection ratio	T = 25°C	75	96		
CMR1	20.log($\Delta V_{icm}/\Delta V_{io}$), V_{icm} = 0 V to V_{CC} - 1.1 V, R_L > 1 M Ω	-40°C < T < 125°C	71			dB
	Common-mode rejection ratio	T = 25°C	73			
CMR2	20.log($\Delta V_{icm}/\Delta V_{io}$), V_{icm} = - 0.1 V to V_{CC} - 1.1 V, R_L > 1 M Ω	-40°C < T < 125°C	57			dB
	Large signal voltage gain V _{OUT} = 0.3 V to	T = 25°C	107	128		
A_{VD}	(V _{CC-} 0.3 V)	-40°C < T < 125°C	103			dB
.,	High level output voltage	T = 25°C			15	
V _{OH}	(V _{OH} = V _{CC} - V _{OUT})	-40°C < T < 125°C			25	
W	Low level output voltage	T = 25°C			15	mV
V_{OL}		-40°C < T < 125°C			25	
	1()/	T = 25°C	50	70		
1	$I_{sink} (V_{OUT} = V_{CC})$	-40°C < T < 125°C	45			A
I _{OUT}	I _{source} (V _{OUT} = 0 V)	T = 25°C	45	65		mA
	Isource (VOUT = 0 V)	-40°C < T < 125°C	40			
laa	Supply current (per channel, V _{OUT} = V _{CC} /2,	T = 25°C		1.7	2.2	A
I _{CC}	$R_L > 1 M\Omega$)	-40°C < T < 125°C			2.5	mA
		AC Performance	·			·
GBW	Gain bandwidth product		14	21		MUZ
Fu	Unity gain frequency			18.5		MHz
Фт	Phase margin	C _L = 47 pF		42		degrees
G _m	Gain margin			8		dB
SR	Slew rate (1)		7.7	11		V/µs
t _s	Settling time	To 0.1%, V _{in} = 1 V _{p-p}		210		ns
		f = 1 kHz		13		
e _n	Equivalent input noise voltage	f = 10 kHz		7		nV/√Hz
C _S	Channel separation (for TSV7722 and TSV7723)	f = 1 kHz		120		dB
	SHDN characteristic	cs (TSV7723 only, SHDN activ	ve low)		1	1
I _{CC}	Supply current per channel in shutdown mode	T = 25°C		2.5	50	nA

DS13614 - Rev 1 page 6/33

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Icc	$V_{OLIT} = V_{CC} / 2$, $R_{I} > 1$ M Ω , $S_{HDN} = V_{CC}$	-40°C < T < 85°C			450	nA
.00	VOOT VCC / 2, NE Y TIME, ORDIN VCC-	-40°C < T < 125°C			4	μΑ
t _{on}	Amplifier turn-on time (other channel already on)	$V_{OUT} = V_{CC}$ - to V_{CC} - + 0.2 V		2		μs
t _{init}	Initialization time (both channels off)	V _{OUT} to 200 mV of final value		11		μs
V _{IH}	SHDN logic high		2			V
V _{IL}	SHDN logic low				0.8	V
I _{IH}	SHDN current high	SHDN = V _{CC+}		TBD		4
I _{IL}	SHDN current low SHDN = V _{CC} -			TBD		pA
la	Output leakage in shutdown mode,	T = 25°C		TBD		pA
I _{Oleak}	SHDN = V _{CC} -	-40°C < T < 125°C		TBD		nA

^{1.} Slew rate value is calculated as the average between positive and negative slew rates.

DS13614 - Rev 1 page 7/33

Table 5. Electrical characteristics at V_{CC+} = 1.8 V, with V_{CC-} = 0 V, V_{icm} = 0.7 V, T = 25°C, and OUT pin connected to V_{CC} / 2 through R_L = 10 k Ω (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
		DC Performance					
	land offertual to a OV	T = 25°C		±50	±250		
V_{io}	Input offset voltage (V _{icm} = 0 V)	-40°C < T < 125°C			±650	μV	
ΔV _{io} /ΔΤ	Input offset voltage drift (V _{icm} = 0 V)	-40°C < T < 125°C				μV/°(
		T = 25°C		1			
l _{ib}	Input bias current (V _{OUT} = V _{CC} /2)	-40°C < T < 125°C		40		pA	
	Land off at a support (V	T = 25°C		1			
l _{io}	Input offset current (V _{OUT} = V _{CC} /2)	-40°C < T < 125°C		15		pA	
	Common-mode rejection ratio	T = 25°C	72	93			
CMR1	$20.\log(\Delta V_{icm}/\Delta V_{io})$, $V_{icm} = 0 \text{ V to}$	4000 - 40-00				dB	
	V_{CC-} 1.1 V, $R_L > 1 M\Omega$	-40°C < T < 125°C	68				
	Common-mode rejection ratio	T = 25°C	70				
CMR2	20. $\log(\Delta V_{icm}/\Delta V_{io})$,	4000 - 4000				dB	
	V_{icm} = - 0.1 V to V_{CC} - 1.1 V, R_L > 1 M Ω	-40°C < T < 125°C	52				
^	Large signal voltage gain V _{OUT} = 0.3 V to	T = 25°C	101	122		-ID	
A_{VD}	(V _{CC-} 0.3 V)	-40°C < T < 125°C	97			dB	
\/	High level output voltage	T = 25°C			15		
V _{OH}	$(V_{OH} = V_{CC} - V_{OUT})$	-40°C < T < 125°C			25		
V	Low level output voltage	T = 25°C			15	− m\	
V_{OL}		-40°C < T < 125°C			25		
	$I_{sink} (V_{OUT} = V_{CC})$	T = 25°C	35	42			
I.e.		-40°C < T < 125°C	20			m/A	
I _{OUT}		T = 25°C	20	32			
	I _{source} (V _{OUT} = 0 V)	-40°C < T < 125°C	10				
I.e.	Supply current (per channel,	T = 25°C		1.7	2.2		
I _{CC}	$V_{OUT} = V_{CC} / 2$, $R_L > 1 M\Omega$)	-40°C < T < 125°C			2.5	m/	
		AC Performance					
GBW	Gain bandwidth product		14	21		NAL I	
Fu	Unity gain frequency			18		MH	
Φ _m	Phase margin	C _L = 47 pF		41		degre	
G _m	Gain margin			8		dB	
SR	Slew rate (1)		7.6	11		V/µ	
		f = 1 kHz		13			
e _n	Equivalent input noise voltage	f = 10 kHz		7		nV/√l	
Cs	Channel separation (for TSV7722 and TSV7723)	f = 1 kHz		120		dB	
	,	│ tics (TSV7723 only, SHDN acti	ve low)				
		T = 25°C	,	2.5	50		
I _{CC}	Supply current per channel in shutdown mode $V_{OUT} = V_{CC} / 2$, $R_L > 1 M\Omega$,	-40°C < T < 85°C			450	n/A	

DS13614 - Rev 1 page 8/33

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
I _{CC}	S _{HDN} = V _{CC} -	-40°C < T < 125°C			4	μA	
t _{on}	Amplifier turn-on time (other channel already on)	$V_{OUT} = V_{CC} - \text{to } V_{CC} - + 0.2 \text{ V}$		1.5		μs	
t _{init}	Initialization time (both channels off)	V _{OUT} to 200 mV of final value		38		μs	
V _{IH}	SHDN logic high		1.2			V	
V _{IL}	SHDN logic low				0.6	V	
I _{IH}	SHDN current high	SHDN = V _{CC+}		TBD		- ^	
I _{IL}	SHDN current low	SHDN = V _{CC} -		TBD		pA	
In	Output leakage in shutdown mode,	T = 25°C		TBD		pA	
l _{Oleak}	SHDN = V _{CC} -	-40°C < T < 125°C		TBD		nA	

^{1.} Slew rate value is calculated as the average between positive and negative slew rates.

DS13614 - Rev 1 page 9/33

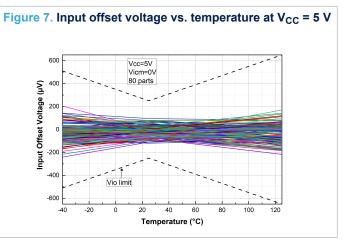
4 Typical performance characteristics

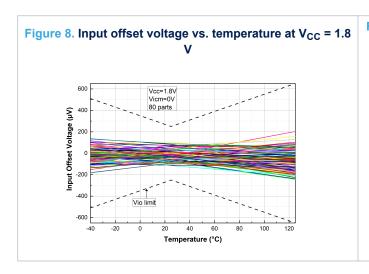
 R_L = 10 $k\Omega$ connected to V_{CC} / 2 and C_L = 47 pF, unless otherwise specified.

Figure 4. Supply current vs. supply voltage

2.5

Vicm=Vcc/2


T=125°C


T=40°C

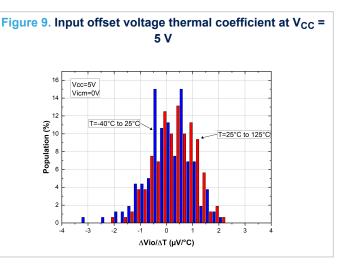

Supply Voltage (V)

Figure 5. Input offset voltage distribution at V_{CC} = 5 V

Figure 6. Input offset voltage distribution at V_{CC} = 1.8 V

DS13614 - Rev 1 page 10/33

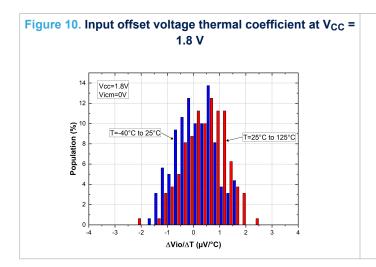
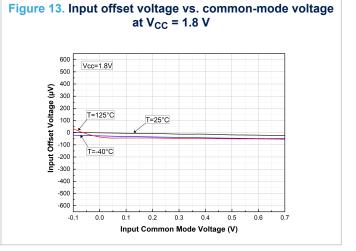
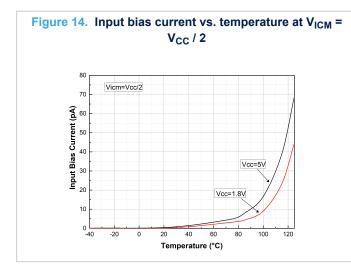
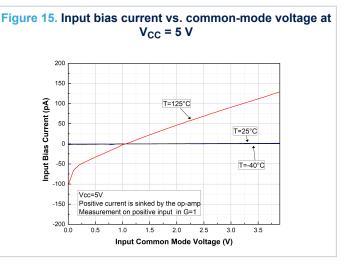


Figure 11. Input offset voltage vs. supply voltage Vicm=0V 500 400 300 Input Offset Voltage (µV) T=125°C 200 100 -100 T=25°C -200 -300 -400 -500 -600 Supply Voltage (V)


Figure 12. Input offset voltage vs. common-mode voltage at $V_{CC} = 5 V$ 600 Vcc=5V 500 400 Input Offset Voltage (µV) 300 200 T=125°C 100 T=25°C 0 -100 T=-40°C -200 -300 -400 -500

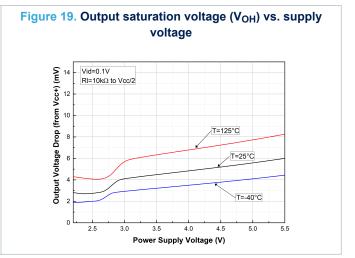

1.5 2.0 2.5 3.0

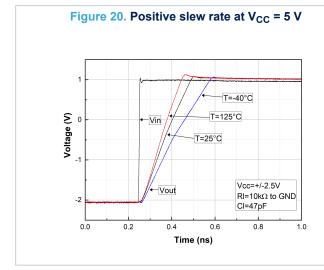

Input Common Mode Voltage (V)

-600

0.5

DS13614 - Rev 1 page 11/33




Figure 16. Output current vs. output voltage at V_{CC} = 5 V

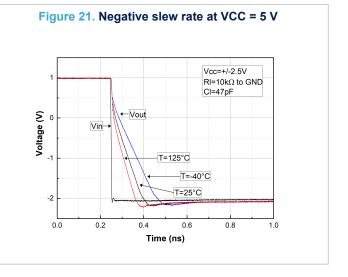

Figure 17. Output current versus output voltage at V_{CC} = Sink Vid=-1V 50 40 30 Output Current (mA) T=125°C T=25°C T=-40°C Source Vid=1V -40 -50 -60 L 0.0 0.5 1.0 1.5 Vout (V)

Figure 18. Output saturation voltage (V_{OL}) vs. supply voltage

Power Supply Voltage (V)

DS13614 - Rev 1 page 12/33

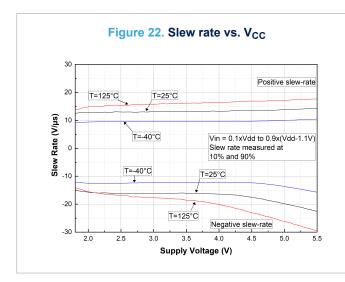
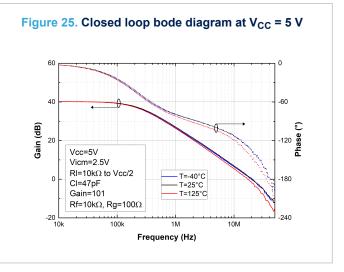
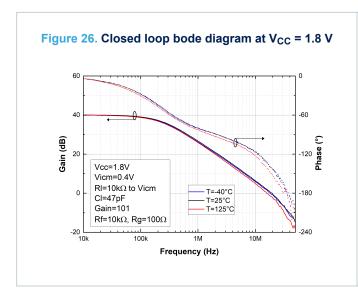
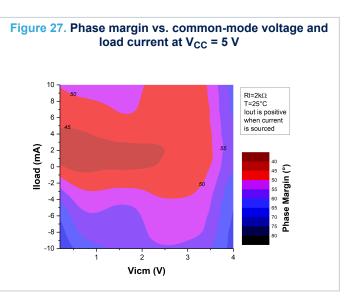
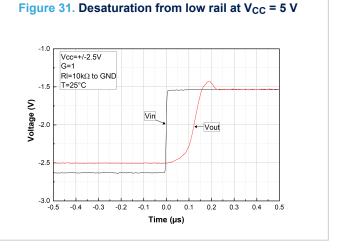
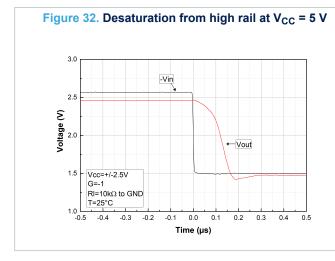





Figure 23. Open loop bode diagram at V_{CC} = 5 V Vcc=5V 210 Vicm=2.5V 60 RI=10k Ω to Vcc/2 180 CI=47pF 150 T=25°C 120 () 90 Phase () Rf=10k Ω , Rg=100 Ω Gain (dB) 90 60 20 0 30 0 0 -30 -60 -20 └─ 100k 10M Frequency (Hz)

Figure 24. Open loop bode diagram at V_{CC} = 1.8 V 180 150 60 120 90 **Gain (dB)** 20 60 Phase (°) 30 0 Vcc=1.8V Vicm=0.4V -30 RI=10k Ω to Vicm 0 CI=47pF -60 T=25°C -90 Rf=10k Ω , Rg=100 Ω -20 └ 100k -120 10M Frequency (Hz)




DS13614 - Rev 1 page 13/33

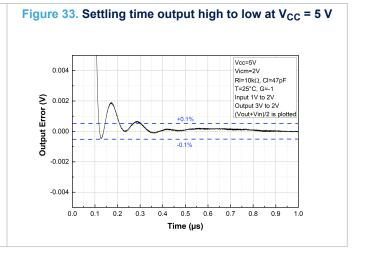


Figure 28. Phase margin vs. capacitive load Closed loop G=+101 70 Specification Rf=10k Ω , Rg=100 Ω at Cl=47pF RI=10kΩ to Vicm Phase Margin (°) 50 40 30 Vcc=5V Vicm=2.5V 20 10 Vcc=1.8V Vicm=0.4V 0 100 10000 10 1000 Capacitive load (pF)

Figure 30. Small step response at V_{CC} = 1.8 V 0.10 Vin 0.05 Voltage (V) --Vout 0.00 Vcc=+1.4/-0.4V -0.05 RI=10kΩ to GND CI=47pF T=25°C -0.10 L 0.0 0.5 0.1 0.2 0.3 0.4 0.6 Time (µs)

DS13614 - Rev 1 page 14/33

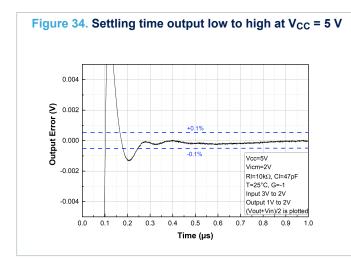
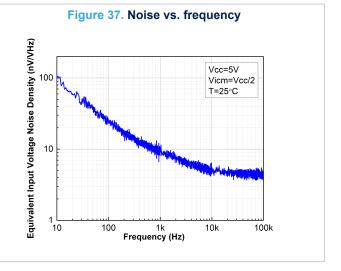
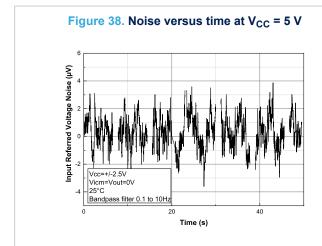
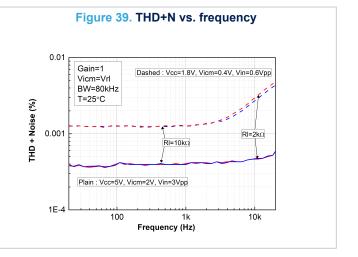
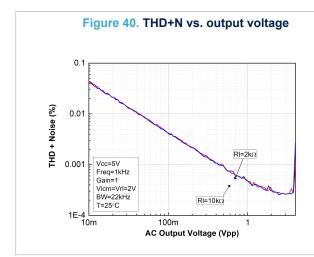
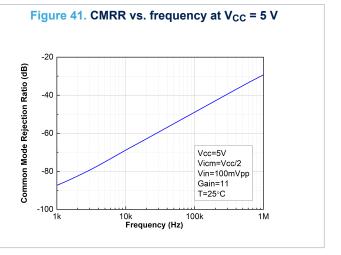





Figure 35. Small step overshoot vs. load capacitance

Figure 36. Linearity vs. load resistance at V_{CC} = 5 V





DS13614 - Rev 1 page 15/33

DS13614 - Rev 1 page 16/33

5 Application information

5.1 Operating voltages

The TSV7722 device can operate from 1.8 to 5.5 V. The parameters are fully specified at 1.8 V, 3.3 V and 5 V power supplies. However, the parameters are very stable over the full V_{CC} range and several characterization curves show the TSV7722 device characteristics over the full operating range. Additionally, the main specifications are guaranteed in extended temperature range from - 40 to 125°C.

The TSV7722 device is low rail input, and rail-to-rail output. The common-mode operating range is from V_{cc} - 0.1 V, to V_{cc+} - 1.1 V. The op amp V_{io} is trimmed at V_{cc} = 3.3 V, V_{icm} = 0 V, and thus the DC precision is optimized for operation with V_{icm} close to Vcc-.

5.2 Input offset voltage drift over the temperature

The maximum input voltage drift variation overtemperature is defined as the offset variation related to the offset value measured at 25°C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25°C can be compensated during production at application level. The maximum input voltage drift overtemperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift overtemperature is computed using the following equation:

$$\frac{\Delta V_{io}}{\Delta T} = max \left| \frac{V_{io}(T) - V_{io}(25^{\circ}C)}{T - 25^{\circ}C} \right| \tag{1}$$

Where $T = -40^{\circ}C$ and $125^{\circ}C$.

The TSV7721, TSV7722, TSV7723 datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a C_{pk} (process capability index) greater than 1.3.

5.3 Unused channel

When one of the two channels of the TSV7722 is not used, it must be properly connected in order to avoid internal oscillations that can negatively impact the signal integrity on the other channel, as well as the current consumption. Two different configurations can be used:

Gain configuration: the channel can be set in gain, the input can be set to any voltage within the V_{icm} operating range.

Comparator configuration: the channel can be set to a comparator configuration (without negative feedback). In this case, positive and negative inputs can be set to any value provided these values are significantly different (100 mV or more, to avoid oscillation between positive and negative state).

5.4 EMI rejection

The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF signal rectification. EMIRR is defined in equation 9:

$$EMIRR = 20.\log\left(\frac{V_{in}\,pp}{\Delta V_{io}}\right) \tag{2}$$

The TSV7722 has been specially designed to minimize susceptibility to EMIRR and shows a low sensitivity. As can be seen in the figure below, EMI rejection ratio has been measured on both inputs and output, from 400 MHz to 2.4 GHz.

DS13614 - Rev 1 page 17/33

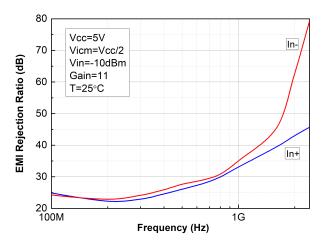


Figure 43. EMIRR on In+, In- and Out pins

EMIRR performances might be improved by adding small capacitances (in the pF range) on the inputs, power supply and output pins.

These capacitances help to minimize the impedance of these nodes at high frequencies.

5.5 Maximum power dissipation

The usable output load current drive is limited by the maximum power dissipation allowed by the device package. The absolute maximum junction temperature for the TSV7722 is 150°C. The junction temperature can be estimated as follows:

$$T_I = P_D \times \theta_{IA} + T_A \tag{3}$$

T_J is the die junction temperature

P_D is the power dissipated in the package

 θ_{JA} is the junction to ambient thermal resistance of the package.

 T_A is the ambient temperature.

The power dissipated in the package P_D is the sum of the quiescent power dissipated and the power dissipated by the output stage transistor. It is calculated as follows:

 $P_D = (V_{CC} \times I_{CC}) + (V_{CC+} - V_{OUT}) \times ILoad$ when the op amp is sourcing the current.

 $P_D = (V_{CC} \times I_{CC}) + (V_{OUT} - V_{CC}) \times ILoad$ when the op amp is sinking the current.

Do not exceed the 150°C maximum junction temperature for the device. Exceeding the junction temperature limit can cause degradation in the parametric performance or even destroy the device.

5.6 Capacitive load and stability

Stability analysis must be performed for large capacitive loads over 47 pF; increasing the load capacitance to high values produces gain peaking in the frequency response, with overshoot and ringing in the step response.

Generally, unity gain configuration is the worst situation for stability and the ability to drive large capacitive loads. For additional capacitive load drive capability in unity-gain configuration, stability can be improved by inserting a small resistor R_{ISO} (10 Ω to 22 Ω) in series with the output (see Figure 35). This resistor significantly reduces ringing while maintaining DC performance for purely capacitive loads. However, if there is a resistive load in parallel with the capacitive load, a voltage divider is created introducing a gain error at the output and slightly reducing the output swing. The error introduced is proportional to the ratio R_{ISO} / R_{L} . R_{ISO} modifies the maximum capacitive load acceptable from a stability point of view, as described in the figure below:

DS13614 - Rev 1 page 18/33

VIN Riso VOUT Cload 10 kΩ

Figure 44. Test configuration for R_{ISO}

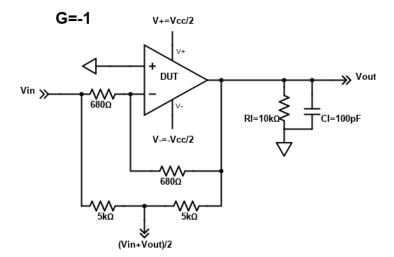
Please note that R_{ISO} = 22 Ω is sufficient to make the TSV7722 stable whatever the capacitive load.

5.7 Resistor values for high speed op amp design

Due to its high gain bandwidth product (GBP), this op amp is particularly sensitive to parasitic impedances. Board parasitics should be taken into account in any sensitive design. Indeed, excessive parasitic (both capacitive and inductive) in the op amp frequency range can alter performances and stability. These issues can often be mitigated by lowering the resistive impedances. More specifically, the RC network created by the schematic resistors (Rf and Rg) and the parasitic capacitances of both the op amp (as documented in Table 3 to Table 5 and illustrated in Figure 45) and the PCB can generate a pole below or in the same order of magnitude than the closed-loop bandwidth of the circuit. In this case, the feedback circuit is not able to fully play its role at high frequency, and the application can be unstable. This issue can happen when the schematic gain is low (typically < 5), or the device is used in follower mode with a resistor in the feedback. In these cases, it is advised to use a low value feedback resistor (Rf), typically 1 k Ω .

Figure 45. Inverting amplifier configuration with parasitic input capacitances

Also, some designs use an input resistor on the positive input, generally of the same value than the input resistance on the negative input. This resistor can be useful to balance the input currents on the positive and negative inputs, and reduce the impact of those input currents on precision. However, this is not useful on the TSV722 as the input currents are very low. Furthermore, this resistor can also interact with the input capacitances to generate a pole. The frequency of this pole should be kept higher than the closed-loop bandwidth frequency. The macromodel provided takes into account the circuit parasitic capacitors. Thus, a transient SPICE simulation (100 mV step) is an easy way to evaluate the stability of the application. However, this cannot replace a hardware evaluation of the application circuit.


DS13614 - Rev 1 page 19/33

5.8 Settling time

Settling time in an application can be defined as the amount of time between the input changes, and the output reaching its final value. It is usually defined with a given tolerance, so the output stability is reached when the output stays within the given range around the final value. In Figures 33 and 34, the settling time is measured in an inverting configuration, using the so-called "false summing node" circuit.

Figure 46. Settling time measurement configuration

This circuit is used with a step input voltage from a positive or negative value, to 0 V. The measurement point being $(V_{in} + V_{out}) / 2$, and V_{out} being in an ideal circuit equal to V_{in} ; the measurement point gives half of the error on V_{out} , comparatively to V_{in} . This error is compared to the tolerance, 0.1% for this circuit, to deduce the settling time. This characteristic is particularly useful when driving an ADC. It is related to the slew rate, GBP and stability of the circuit. It also varies with the circuit gain, the circuit load, and the input voltage step value. However, computing the value of the settling time in a given configuration is not straightforward. The macromodel can give a good estimation, but prototyping can be needed for fine circuit optimization.

5.9 PCB layout recommendations

Particular attention must be paid to the layout of the PCB tracks connected to the amplifier, load, and power supply. The power and ground traces are critical as they must provide adequate energy and grounding for all circuits. The best practice is to use short and wide PCB traces to minimize voltage drops and parasitic inductance. In addition, to minimizing parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used. The copper traces that connect the output pins to the load and supply pins should be as wide as possible to minimize trace resistance.

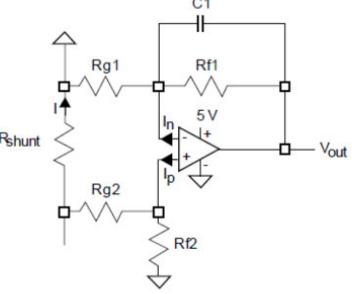
5.10 Decoupling capacitor

In order to ensure op amp full functionality, it is mandatory to place a decoupling capacitor of at least 22 nF as close as possible to the op amp supply pins. A good decoupling helps to reduce electromagnetic interference impact.

5.11 Macro model

Accurate macro models of the TSV7722 device are available on the STMicroelectronics' website at: www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSV7722 operational amplifier. They emulate the nominal performance of a typical device at 25°C within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the right operational amplifier, but they do not replace on-board measurements.

DS13614 - Rev 1 page 20/33


Typical applications

6.1 Low-side current sensing

Power management mechanisms are found in most electronic systems. Current sensing is useful for protecting applications. The low-side current sensing method consists of placing a sense resistor between the load and the circuit ground. The resulting voltage drop is amplified using the TSV772x (see Figure 48).

Figure 47. Low-side current sensing schematic

C₁

Vout can be expressed as follows:

$$\begin{split} V_{Out} &= R_{shunt} \cdot I \left(1 - \frac{R_{g2}}{R_{g2} + R_{f2}} \right) \cdot \left(1 + \frac{R_{f1}}{R_{g1}} \right) + I_p \cdot \frac{R_{g2} \cdot R_{f2}}{R_{g2} + R_{f2}} \cdot \left(1 + \frac{R_{f1}}{R_{g1}} \right) - I_n \cdot R_{f1} \\ &- V_{io} \cdot \left(1 + \frac{R_{f1}}{R_{g1}} \right) \end{split} \tag{4}$$

Assuming that $R_{f2} = R_{f1} = R_f$ and $R_{g2} = R_{g1} = R_g$, this equation can be simplified as follows:

$$V_{Out} = R_{shunt} \cdot I \cdot \frac{R_f}{R_g} - V_{io} \cdot \left(1 + \frac{R_f}{R_g}\right) + R_f \cdot I_{io}$$
 (5)

The main advantage of using the TSV7722 for a low-side current sensing relies on its low Vio, compared to general purpose operational amplifiers. For the same current and targeted accuracy, the shunt resistor can be chosen with a lower value, resulting in lower power dissipation, lower drop in the ground path, and lower cost. Particular attention must be paid to the matching and precision of R_{g1}, R_{g2}, R_{f1}, and R_{f2}, to maximize the accuracy of the measurement. Furthermore, on the TSV772, the V_{io} is trimmed, and thus reaches his minimum value, at V_{icm} = 0 V. This allows optimized precision for low-side current sensing application without precision degradation due to the CMRR.

DS13614 - Rev 1 page 21/33

6.2 Photodiode transimpedance amplification

The TSV7722, with high bandwidth and slew rate, is well suited for photodiode signal conditioning in a transimpedance amplifier circuit. This application is useful in high performance UV sensors, smoke detectors or particle sensors.

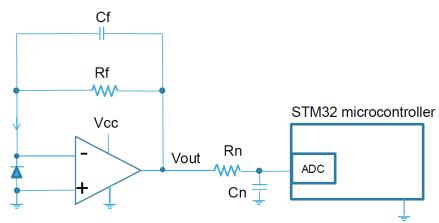


Figure 48. Photodiode transimpedance amplifier circuit

The transimpedance amplifier circuit converts the small photodiode output current in the nA range, into a voltage signal readable by an ADC following Equation 12:

$$V_{Out} = R_f \cdot I_{photodiode} \tag{6}$$

The feedback resistance is usually in the $M\Omega$ range, in order to get a large enough voltage output range. However, together with the diode parasitic capacitance, the op amp input capacitances and the PCB stray capacitance, this feedback network creates a pole that makes the circuit oscillate. Using a small (few pF) capacitor in parallel with the feedback resistor is mandatory to stabilize the circuit. The value of this capacitor can be tuned to optimize the application settling time with a SPICE simulation using the op amp macromodel, or by prototyping.

For more details on tuning this circuit, please read the application note AN4451.

DS13614 - Rev 1 page 22/33

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

DS13614 - Rev 1 page 23/33

7.1 SOT23-5 package information

Figure 49. SOT23-5 package outline

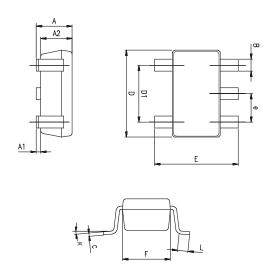


Table 6. SOT23-5 package mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α	0.90	1.20	1.45	0.035	0.047	0.057			
A1			0.15			0.006			
A2	0.90	1.05	1.30	0.035	0.041	0.051			
В	0.35	0.40	0.50	0.014	0.016	0.020			
С	0.09	0.15	0.20	0.004	0.006	0.020			
D	2.80	2.90	3.00	0.110	0.114	0.118			
D1		1.90			0.075				
е		0.95			0.037				
E	2.60	2.80	3.00	0.102	0.110	0.118			
F	1.50	1.60	1.75	0.059	0.063	0.069			
L	0.10	0.35	0.60	0.004	0.014	0.024			
K	0°		10°	0°		10°			

DS13614 - Rev 1 page 24/33

7.2 DFN8 2x2 package information

Figure 50. DFN8 2x2 package outline

Table 7. DFN8 2x2 package mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	0.51	0.55	0.60	0.020	0.022	0.024			
A1			0.05			0.002			
A3		0.15			0.006				
b	0.18	0.25	0.30	0.007	0.010	0.012			
D	1.85	2.00	2.15	0.073	0.079	0.085			
D2	1.45	1.60	1.70	0.057	0.063	0.067			
Е	1.85	2.00	2.15	0.073	0.079	0.085			
E2	0.75	0.90	1.00	0.030	0.035	0.039			
е		0.50			0.020				
L	0.225	0.325	0.425	0.009	0.013	0.017			
ddd			0.08			0.003			

DS13614 - Rev 1 page 25/33

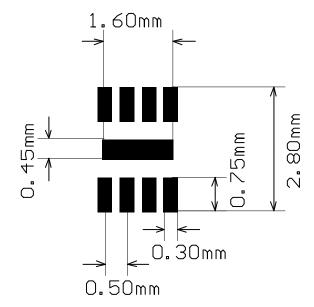


Figure 51. DFN8 2x2 recommended footprint

Note: The exposed pad of the DFN8 2x2 can be connected to VCC- or left floating.

DS13614 - Rev 1 page 26/33

7.3 MiniSO8 package information

Figure 52. MiniSO8 package outline

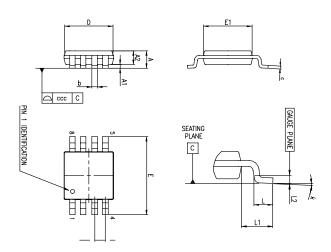


Table 8. MiniSO8 package mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.1			0.043
A1	0		0.15	0		0.0006
A2	0.75	0.85	0.95	0.030	0.033	0.037
b	0.22		0.40	0.009		0.016
С	0.08		0.23	0.003		0.009
D	2.80	3.00	3.20	0.11	0.118	0.126
E	4.65	4.90	5.15	0.183	0.193	0.203
E1	2.80	3.00	3.10	0.11	0.118	0.122
е		0.65			0.026	
L	0.40	0.60	0.80	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.010	
k	0°		8°	0°		8°
ccc			0.10			0.004

DS13614 - Rev 1 page 27/33

7.4 SO-8 package information

SEATING PLANE

C C C C

SEATING GAGE PLANE

SECTION B-B

B

B

SECTION B-B

D

D

D

O016023_So-807.fig2_Rev10

Figure 53. SO-8 package outline

Table 9. SO-8 mechanical data

Dim.	mm				
DIM.	Min.	Тур.	Max.		
А			1.75		
A1	0.10		0.25		
A2	1.25				
b	0.31		0.51		
b1	0.28		0.48		
С	0.10		0.25		
c1	0.10		0.23		
D	4.80	4.90	5.00		
Е	5.80	6.00	6.20		
E1	3.80	3.90	4.00		
е		1.27			
h	0.25		0.50		
L	0.40		1.27		
L1		1.04			
L2		0.25			
k	0°		8°		
ccc			0.10		

DS13614 - Rev 1 page 28/33

7.5 MiniSO10 package information

Figure 54. MiniSO10 package outline

Table 10. MiniSO10 mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.10			0.043
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.78	0.86	0.94	0.031	0.034	0.037
b	0.25	0.33	0.40	0.010	0.013	0.016
С	0.15	0.23	0.30	0.006	0.009	0.012
D	2.90	3.00	3.10	0.114	0.118	0.122
E	4.75	4.90	5.05	0.187	0.193	0.199
E1	2.90	3.00	3.10	0.114	0.118	0.122
е		0.50			0.020	
L	0.40	0.55	0.70	0.016	0.022	0.028
L1		0.95			0.037	
k	0 °	3 °	6 °	0 °	3 °	6 °
aaa			0.10			0.004

DS13614 - Rev 1 page 29/33

8 Ordering information

Table 11. Order code

Order code	Temperature range	Package	Channel	Automotive	Marking
TSV7721ILT	-40 to +125°C	SOT23-5	1		K2A
TSV7721IYLT	-40 to +125°C Automotive grade	SOT23-5	1	•	K217
TSV7722IQ2T	-40 to +125°C	DFN8 2x2	2		K2A
TSV7722IST		MiniSO8	2		K2A
TSV7722IDT		SO8	2		TSV7722I
TSV7723IST		MiniSO10	2		K2A
TSV7722IYST	-40 to +125°C	MiniSO8	2	•	K217
TSV7722IYDT	Automotive grade	SO8	2	•	TSV7722Y

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are ongoing.

DS13614 - Rev 1 page 30/33

Revision history

Table 12. Document revision history

Date	Revision	Changes
20-Jan-2021	1	Initial release.

DS13614 - Rev 1 page 31/33

Contents

1	Pin o	connections	2				
2	Abso	Absolute maximum ratings and operating conditions					
3	Elec	Electrical characteristics					
4	Typic	cal performance characteristics	10				
5	Appl	ication information	17				
	5.1	Operating voltages	17				
	5.2	Input offset voltage drift over the temperature	17				
	5.3	Unused channel	17				
	5.4	EMI rejection	17				
	5.5	Maximum power dissipation	18				
	5.6	Capacitive load and stability	18				
	5.7	Resistor values for high speed op amp design	19				
	5.8	Settling time	20				
	5.9	PCB layout recommendations	20				
	5.10	Decoupling capacitor	20				
	5.11	Macro model	20				
6	Турі	cal applications	21				
	6.1	Low-side current sensing	21				
	6.2	Photodiode transimpedance amplification	22				
7	Pack	age information	23				
	7.1	DFN8 2x2 mm package information	24				
	7.2	DFN8 2x2 package information	25				
	7.3	MiniSO8 package information	27				
	7.4	SO-8 package information	28				
	7.5	MiniSO10 package information	29				
8	Orde	ering information	30				
Rev	ision	history	31				

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS13614 - Rev 1 page 33/33