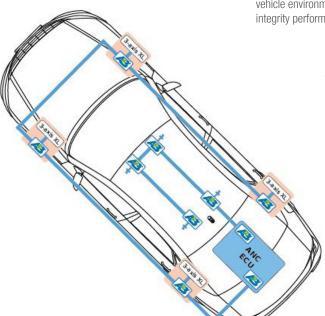
Road Noise Cancellation (RNC) Sensors

Molex's Road Noise Cancellation (RNC) Sensors, with A2B technology, convert vehicle chassis vibration into a signal that generates a cancellation soundwave, reducing road noise within the cabin

Features and Advantages

Road Noise Cancellation Sensor

molex


configurations available

IP6K9K NEMA Rating

Protects against water and dust ingress in harsh environments

Low system latency

Delivers superior noise cancellation because the time between the sensor receiving the vibration and the module receiving the signal is extremely low.

Daisy-chained sensors

Eliminates heavy star-patterned cabling and noise, vibration and harshness (NVH) sound-dampening material

Collaboration with Analog Device on accelerometer and A2B technology Provides 50% space savings over Provides a system at an overall lower cost

Various mechanical housing

Offers flexibility for parallel or perpendicular positioning to the ground in order to to enable mechanical mounting to a vehicle and allows a variety of connector orientations and terminal sizes

Mated with 1X4 Mini50 Connector

Provides 50% space savings over traditional USCAR 0.64mm connectors. Ideal for interior transportationvehicle environments. Delivers superior signal integrity performance

4 to 8 sensors located on chassis frame

Captures vibration energy transfer from the suspension into the vehicle chassis at the earliest point for optimal cancellation timing

Road Noise Cancellation (RNC) Sensors

molex

Markets and Applications

Automotive

In-cabin noise reduction

In-Vehicle Cabin

Specifications

ACCELEROMETER

Maximum Monitored Shock Load (max.): 16g in all axes Anticipated Sensory Frequency Range: 20-500 HZ Programmable Frequency Range: 500 Hz to 4kHZ Low Latency: 150µ maximum at 2kHz bandwidth Low Noise:

 $<100\mu g/\sqrt{Hz}$ for x- and y-axes $<150\mu g/\sqrt{Hz}$ for z-axis Digital Output: Up to 14 Gbps

MECHANICAL

Installation Force into Vehicle position (max.): 25N Retention Force Prior to Nut-and-Screw Fastening: >15N

Axial Pull Force after Fastening (min.): 350N Retained in Place by M6 Screw and Nut Torque Value of Screw and Nut: 20 \pm 2N*m

PHYSICAL

Operating Temperatures: -40 to +115°C Protection Classification: IP6K9K per ISO 20653 Vibration Classification: On-Vehicle Spring Mass Chemical Resistance: Exterior Body and Underbody Mechanical Shock/Drop: Pothole and Collision Rated

ENVIRONMENTAL

Temperature Classification: -40 to +115°C Protection Classification: IP6K9K (Dust and High-Pressure Spray) per ISO 20653

HARNESSING EXPECTATIONS

2x Jacketed Unshielded Twisted Pairs for 100 Mbps Transmission (Twisted Pair Cable Types Must Comply with SAE-J3117 Standard and Open Alliance Specifications for Communication Channel 2.0 – Equivalent to 100BaseT1)
Digitally Matched Differential Impedance: 100 Ohms Sensor Units Are "Daisy Chained" Together

www.molex.com

Molex is a registered trademark of Molex, LLC in the United States of America and may be registered in other countries; all other trademarks listed herein belong to their respective owners.